Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

Wind energy, which is among the most promising renewable energy resources, is used throughout the world as an alternative to fossil fuels. In the assessment of wind energy for a region, the use of two-parameter Weibull distribution is an important tool. In this study, wind speed data, collected for a one year period between June 2012 and June 2013, were evaluated. Wind speed data, collected for two different heights (20 m and 30 m) from a measurement station installed in Atihm University campus area (Ankara, Turkey), were recorded using a data logger as one minute average values. Yearly average hourly wind speed values for 20 m and 30 m heights were determined as 2.9859 m/s and 3.3216 m/s, respectively. Yearly and seasonal shape (k) and scale (c) parameter of Weibull distribution for wind speed were calculated for each height using five different methods. Additionally, since the hub height of many wind turbines is higher than these measurement heights, Weibull parameters were also calculated for 50 m height. Root mean square error values of Weibull distribution functions for each height, derived using five different methods, show that a satisfactory representation of wind data is achieved for all methods. Yearly and seasonal wind power density values of the region were calculated using the best Weibull parameters for each case. As a conclusion, the highest wind power density value was found to be in winter season while the lowest value was encountered in autumn season. Yearly wind power densities were calculated as 39.955 (W/m(2)), 51.282 (W/m(2)) and 72.615 (W/m(2)) for 20 m, 30 m and 50 m height, respectively. The prevailing wind direction was also determined as southeast for the region. It can be concluded that the wind power density value at the region is considerable and can be exploited using small scale wind turbines. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702; imir, Mehmet/0000-0002-2599-7412; BILIR, LEVENT/0000-0002-8227-6267

Keywords

Weibull parameters, Wind speed modeling, Wind energy, Wind power density

Turkish CoHE Thesis Center URL

Fields of Science

Citation

61

WoS Q

Q1

Scopus Q

Source

4th International Conference on Nuclear and Renewable Energy Resources (NURER) -- OCT 26-29, 2014 -- Antalya, TURKEY

Volume

40

Issue

44

Start Page

15301

End Page

15310

Collections