Drbem Solution of Mhd Flow With Magnetic Induction and Heat Transfer

dc.authoridTezer-Sezgin, Munevver/0000-0001-5439-3477
dc.authoridPekmen, Bengisen/0000-0002-3073-6284
dc.authorscopusid57200550143
dc.authorscopusid35071900400
dc.authorwosidPekmen Geridonmez, Bengisen/G-5598-2018
dc.authorwosidtezer-sezgin, münevver/AAB-3269-2022
dc.contributor.authorPekmen, B.
dc.contributor.authorTezer-Sezgin, M.
dc.contributor.otherMathematics
dc.contributor.otherMathematics
dc.date.accessioned2024-10-06T10:59:48Z
dc.date.available2024-10-06T10:59:48Z
dc.date.issued2015
dc.departmentAtılım Universityen_US
dc.department-temp[Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkeyen_US
dc.descriptionTezer-Sezgin, Munevver/0000-0001-5439-3477; Pekmen, Bengisen/0000-0002-3073-6284en_US
dc.description.abstractThis study proposes the dual reciprocity boundary element (DRBEM) solution for full magnetohydrodynamics (MHD) equations in a lid-driven square cavity. MHD equations are coupled with the heat transfer equation by means of the Boussinesq approximation. Induced magnetic field is also taken into consideration. The governing equations in terms of stream function, temperature, induced magnetic field components, and vorticity are solved employing DRBEM in space together with the implicit backward Euler formula for the time derivatives. The use of DRBEM with linear boundary elements which is a boundary discretization method enables one to obtain small sized linear systems. This makes the whole procedure computationally efficient and cheap. The results are depicted with respect to varying physical parameters such as Prandt1 (0.005 <= Pr <= 1), Reynolds (100 <= Re <= 2500), magnetic Reynolds (1 <= Rein <= 100), Hartmann (10 <= Ha <= 100) and Rayleigh (10 <= Ra <= 10(6)) numbers for discussing the effect of each parameter on the flow and temperature behaviors of the fluid. It is found that an increase in Ha slows down the fluid motion and heat transfer becomes conductive. Centered square blockage causes secondary flows on its left and light even for small Re. Strong temperature gradients occur around the blockage and near the moving lid for increasing values of Ra.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount3
dc.identifier.endpage207en_US
dc.identifier.issn1526-1492
dc.identifier.issn1526-1506
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84940209959
dc.identifier.scopusqualityQ3
dc.identifier.startpage183en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14411/9017
dc.identifier.volume105en_US
dc.identifier.wosWOS:000362800800001
dc.identifier.wosqualityQ2
dc.institutionauthorPekmen, Bengisen
dc.institutionauthorPekmen, Bengisen
dc.language.isoenen_US
dc.publisherTech Science Pressen_US
dc.relation.ispartofCMES - Computer Modeling in Engineering and Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount3
dc.subjectMHDen_US
dc.subjectconvectionen_US
dc.subjectDRBEMen_US
dc.subjectheat transferen_US
dc.titleDrbem Solution of Mhd Flow With Magnetic Induction and Heat Transferen_US
dc.typeArticleen_US
dc.wos.citedbyCount3
dspace.entity.typePublication
relation.isAuthorOfPublication7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections