Multiloop State-Dependent Nonlinear Time-Varying Sliding Mode Control of Unmanned Small-Scale Helicopter

dc.authorid Salamci, Metin Uymaz/0000-0002-6150-8014
dc.authorscopusid 55846118800
dc.authorscopusid 6506327033
dc.authorscopusid 6506329918
dc.authorwosid Salamci, Metin Uymaz/AAB-5826-2021
dc.contributor.author Ozcan, Sinan
dc.contributor.author Salamci, Metin U.
dc.contributor.author Nalbantoglu, Volkan
dc.contributor.other Airframe and Powerplant Maintenance
dc.date.accessioned 2024-07-05T15:40:15Z
dc.date.available 2024-07-05T15:40:15Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp [Ozcan, Sinan] Turkish Aerosp Ind, Helicopter Div, TR-06980 Ankara, Turkey; [Salamci, Metin U.] Gazi Univ, Dept Mech Engn, Ankara, Turkey; [Nalbantoglu, Volkan] Atilim Univ, Sch Civil Aviat, Ankara, Turkey en_US
dc.description Salamci, Metin Uymaz/0000-0002-6150-8014 en_US
dc.description.abstract Time delays, parameter uncertainties, and disturbances are the fundamental problems that hinder the stability and reduce dramatically the tracking performance of dynamical systems. In this paper, a new state-dependent nonlinear time-varying sliding mode control autopilot structure is proposed to cope with these dynamical and environmental complexities for an unmanned helicopter. The presented technique is based on freezing the nonlinear system equations on each time step and designing a controller using the frozen system model at this time step. The proposed method offers an improved performance in the presence of major disturbances and parameter uncertainties by adapting itself to possible dynamical varieties without a need of trimming the system on different operating conditions. Unlike the existing linear cascade autopilot structure, this study also proposes a nonlinear cascade state-dependent coefficient helicopter autopilot structure consisting of four separate nonlinear sub-systems. The proposed method is tested through the real time and PC-based simulations. To show the performance of the proposed robust method, it is also bench-marked against a linear sliding control control in PC-based simulations. en_US
dc.description.sponsorship Turkish Aerospace Industries, Inc. (TAI) [DKTM/2015/07] en_US
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Turkish Aerospace Industries, Inc. (TAI) under project no: DKTM/2015/07. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1177/0954410019872116
dc.identifier.endpage 606 en_US
dc.identifier.issn 0954-4100
dc.identifier.issn 2041-3025
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85073801877
dc.identifier.startpage 585 en_US
dc.identifier.uri https://doi.org/10.1177/0954410019872116
dc.identifier.uri https://hdl.handle.net/20.500.14411/3321
dc.identifier.volume 234 en_US
dc.identifier.wos WOS:000485274800001
dc.identifier.wosquality Q4
dc.institutionauthor Nalbantoğlu, Volkan
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 4
dc.subject Sliding mode control en_US
dc.subject state-dependent Riccati equation en_US
dc.subject flight control en_US
dc.subject flight dynamics en_US
dc.subject nonlinear control en_US
dc.title Multiloop State-Dependent Nonlinear Time-Varying Sliding Mode Control of Unmanned Small-Scale Helicopter en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 003ea6c3-559c-493c-8177-fd23f9b3505b
relation.isAuthorOfPublication.latestForDiscovery 003ea6c3-559c-493c-8177-fd23f9b3505b
relation.isOrgUnitOfPublication 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication.latestForDiscovery 0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Collections