On the Lupas <i>q</I>-analogue of the Bernstein Operator
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:09:25Z | |
dc.date.available | 2024-07-05T15:09:25Z | |
dc.date.issued | 2006 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Let R-n(f,q;x) : C[0, 1] -> C[0, 1] be q-analogues of the Bernstein operators defined by Lupas in 1987. If q = 1, then R-n (f, 1; x) are classical Bernstein polynomials. For q not equal 1, the operators R-n (f, q; x) are rational functions rather than polynomials. The paper deals with convergence properties of the sequence {R-n (f, q; x)}. It is proved that {R-n (f, q(n); x)} converges uniformly to f(x) for any f(x) is an element of C[0, 1] if and only if q(n) -> 1. In the case q > 0, q not equal 1 being fixed the sequence I R. (f, q; x) I converges uniformly to f(x) is an element of C[0, 1] if and only if f(x) is linear. | en_US |
dc.identifier.citationcount | 68 | |
dc.identifier.doi | 10.1216/rmjm/1181069386 | |
dc.identifier.endpage | 1629 | en_US |
dc.identifier.issn | 0035-7596 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-33846826629 | |
dc.identifier.startpage | 1615 | en_US |
dc.identifier.uri | https://doi.org/10.1216/rmjm/1181069386 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1175 | |
dc.identifier.volume | 36 | en_US |
dc.identifier.wos | WOS:000243579900014 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Rocky Mt Math Consortium | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.scopus.citedbyCount | 73 | |
dc.subject | Bernstein polynomials | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial coefficients | en_US |
dc.subject | convergence | en_US |
dc.title | On the Lupas <i>q</I>-analogue of the Bernstein Operator | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 70 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |