On the Lupas <i>q</I>-analogue of the Bernstein Operator

dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:09:25Z
dc.date.available 2024-07-05T15:09:25Z
dc.date.issued 2006
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description.abstract Let R-n(f,q;x) : C[0, 1] -> C[0, 1] be q-analogues of the Bernstein operators defined by Lupas in 1987. If q = 1, then R-n (f, 1; x) are classical Bernstein polynomials. For q not equal 1, the operators R-n (f, q; x) are rational functions rather than polynomials. The paper deals with convergence properties of the sequence {R-n (f, q; x)}. It is proved that {R-n (f, q(n); x)} converges uniformly to f(x) for any f(x) is an element of C[0, 1] if and only if q(n) -> 1. In the case q > 0, q not equal 1 being fixed the sequence I R. (f, q; x) I converges uniformly to f(x) is an element of C[0, 1] if and only if f(x) is linear. en_US
dc.identifier.citationcount 68
dc.identifier.doi 10.1216/rmjm/1181069386
dc.identifier.endpage 1629 en_US
dc.identifier.issn 0035-7596
dc.identifier.issue 5 en_US
dc.identifier.scopus 2-s2.0-33846826629
dc.identifier.startpage 1615 en_US
dc.identifier.uri https://doi.org/10.1216/rmjm/1181069386
dc.identifier.uri https://hdl.handle.net/20.500.14411/1175
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000243579900014
dc.identifier.wosquality Q3
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Rocky Mt Math Consortium en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 73
dc.subject Bernstein polynomials en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject convergence en_US
dc.title On the Lupas <i>q</I>-analogue of the Bernstein Operator en_US
dc.type Article en_US
dc.wos.citedbyCount 70
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections