Numerical Solution of Buoyancy Mhd Flow With Magnetic Potential

dc.authorid Pekmen Geridonmez, Bengisen/0000-0002-3073-6284
dc.authorid Tezer-Sezgin, Munevver/0000-0001-5439-3477
dc.authorscopusid 57200550143
dc.authorscopusid 35071900400
dc.authorwosid Pekmen Geridonmez, Bengisen/G-5598-2018
dc.authorwosid tezer-sezgin, münevver/AAB-3269-2022
dc.contributor.author Pekmen, B.
dc.contributor.author Tezer-Sezgin, M.
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:27:03Z
dc.date.available 2024-07-05T14:27:03Z
dc.date.issued 2014
dc.department Atılım University en_US
dc.department-temp [Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey; [Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description Pekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477 en_US
dc.description.abstract In this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an externally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the 20 non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential, current density and vorticity are solved by using DRBEM with implicit backward Euler time integration scheme. Numerical results are obtained utilizing linear boundary elements and linear radial basis functions approximation for the inhomogeneities, in a double lid-driven staggered cavity and in a channel with backward facing step. The results are given for several values of problem parameters as Reynolds number (Re), magnetic Reynolds number (Rem), Hartmann number (Ha) and Rayleigh number (Ra). With the increase in Rem, both magnetic potential and current density circulate near the abrupt changes of the walls. The increase in Ha suppresses this perturbation, and forces the magnetic potential lines to be in the direction of the applied magnetic field. The boundary layer formation through the walls emerge in the flow and current density for larger values of Ha. (C) 2013 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 12
dc.identifier.doi 10.1016/j.ijheatmasstransfer.2013.12.029
dc.identifier.endpage 182 en_US
dc.identifier.issn 0017-9310
dc.identifier.issn 1879-2189
dc.identifier.scopus 2-s2.0-84891715745
dc.identifier.startpage 172 en_US
dc.identifier.uri https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.029
dc.identifier.uri https://hdl.handle.net/20.500.14411/216
dc.identifier.volume 71 en_US
dc.identifier.wos WOS:000332438400019
dc.identifier.wosquality Q1
dc.institutionauthor Pekmen, Bengisen
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 13
dc.subject Buoyancy MHD en_US
dc.subject Magnetic potential en_US
dc.subject Current density en_US
dc.subject DRBEM en_US
dc.subject Backward-facing step flow en_US
dc.title Numerical Solution of Buoyancy Mhd Flow With Magnetic Potential en_US
dc.type Article en_US
dc.wos.citedbyCount 12
dspace.entity.type Publication
relation.isAuthorOfPublication 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery 7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections