Numerical Solution of Buoyancy Mhd Flow With Magnetic Potential

dc.authoridPekmen Geridonmez, Bengisen/0000-0002-3073-6284
dc.authoridTezer-Sezgin, Munevver/0000-0001-5439-3477
dc.authorscopusid57200550143
dc.authorscopusid35071900400
dc.authorwosidPekmen Geridonmez, Bengisen/G-5598-2018
dc.authorwosidtezer-sezgin, münevver/AAB-3269-2022
dc.contributor.authorPekmen, B.
dc.contributor.authorTezer-Sezgin, M.
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:27:03Z
dc.date.available2024-07-05T14:27:03Z
dc.date.issued2014
dc.departmentAtılım Universityen_US
dc.department-temp[Tezer-Sezgin, M.] Middle E Tech Univ, Dept Math, TR-06800 Ankara, Turkey; [Pekmen, B.; Tezer-Sezgin, M.] Middle E Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey; [Pekmen, B.] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionPekmen Geridonmez, Bengisen/0000-0002-3073-6284; Tezer-Sezgin, Munevver/0000-0001-5439-3477en_US
dc.description.abstractIn this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an externally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the 20 non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential, current density and vorticity are solved by using DRBEM with implicit backward Euler time integration scheme. Numerical results are obtained utilizing linear boundary elements and linear radial basis functions approximation for the inhomogeneities, in a double lid-driven staggered cavity and in a channel with backward facing step. The results are given for several values of problem parameters as Reynolds number (Re), magnetic Reynolds number (Rem), Hartmann number (Ha) and Rayleigh number (Ra). With the increase in Rem, both magnetic potential and current density circulate near the abrupt changes of the walls. The increase in Ha suppresses this perturbation, and forces the magnetic potential lines to be in the direction of the applied magnetic field. The boundary layer formation through the walls emerge in the flow and current density for larger values of Ha. (C) 2013 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationcount12
dc.identifier.doi10.1016/j.ijheatmasstransfer.2013.12.029
dc.identifier.endpage182en_US
dc.identifier.issn0017-9310
dc.identifier.issn1879-2189
dc.identifier.scopus2-s2.0-84891715745
dc.identifier.startpage172en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijheatmasstransfer.2013.12.029
dc.identifier.urihttps://hdl.handle.net/20.500.14411/216
dc.identifier.volume71en_US
dc.identifier.wosWOS:000332438400019
dc.identifier.wosqualityQ1
dc.institutionauthorPekmen, Bengisen
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount13
dc.subjectBuoyancy MHDen_US
dc.subjectMagnetic potentialen_US
dc.subjectCurrent densityen_US
dc.subjectDRBEMen_US
dc.subjectBackward-facing step flowen_US
dc.titleNumerical Solution of Buoyancy Mhd Flow With Magnetic Potentialen_US
dc.typeArticleen_US
dc.wos.citedbyCount12
dspace.entity.typePublication
relation.isAuthorOfPublication7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isAuthorOfPublication.latestForDiscovery7ca54091-b6a4-418c-ab3c-7bb6aa482eac
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections