Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling

dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Taylan, Pakize
dc.date.accessioned 2024-12-05T20:48:52Z
dc.date.available 2024-12-05T20:48:52Z
dc.date.issued 2025
dc.description.abstract Outlier detection and variable selection are among main objectives of statistical analysis. In our study, we address the outlier problem for classification by using the Mean Shift Outlier Model (CLMSOM). Since the MSOM has more coefficients than the linear regression model, the complexity of the model MSOM is high. Therefore, we consider feature selection for MSOM by using fused Lasso (FLasso), which is beneficial and helpful in the cases where the number of explanatory variables or features is greater than the sample size. FLasso is penalizing both the coefficients and their successive differences by the L-1-norm, and it allows sparsity for both of them, while Lasso only allows the coefficients by considering a nonsmooth optimization problem. In this study, we take into account Iterated Ridge approximation which enables us to use a smooth optimization for FLasso problem. Generated smooth optimization problem is solved by using one of continuous optimization techniques called Conic Quadratic Programming (CQP), which is enabling the utilization of interior point methods. The newly developed method is called Conic FLasso for classification by MSOM (C-FLasso-CLMSOM) and is applied to real world data set to show its performance. en_US
dc.identifier.doi 10.3934/jdg.2024002
dc.identifier.issn 2164-6066
dc.identifier.issn 2164-6074
dc.identifier.scopus 2-s2.0-85210021480
dc.identifier.uri https://doi.org/10.3934/jdg.2024002
dc.identifier.uri https://hdl.handle.net/20.500.14411/10284
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.ispartof Journal of Dynamics and Games
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Outlier en_US
dc.subject fused Lasso en_US
dc.subject mean shift en_US
dc.subject classification en_US
dc.subject convex optimization en_US
dc.title Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 36015912400
gdc.author.scopusid 23974021700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkiye en_US
gdc.description.endpage 23 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q3
gdc.description.startpage 1 en_US
gdc.description.volume 12 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4390701565
gdc.identifier.wos WOS:001144952700001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords mean shift
gdc.oaire.keywords Convex programming
gdc.oaire.keywords Mean shift
gdc.oaire.keywords Ridge regression; shrinkage estimators (Lasso)
gdc.oaire.keywords convex optimization
gdc.oaire.keywords Linear regression; mixed models
gdc.oaire.keywords classification
gdc.oaire.keywords Outlier
gdc.oaire.keywords fused Lasso
gdc.oaire.keywords Fused lasso
gdc.oaire.keywords Classification
gdc.oaire.keywords outlier
gdc.oaire.keywords Convex optimization
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 1.53290046
gdc.openalex.normalizedpercentile 0.68
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Yerlikaya Özkurt, Fatma
gdc.wos.citedcount 2
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhancing classification modeling through feature selection and smoothness A conic fused lasso approach integrated with mean shift outlier modelling.pdf
Size:
549 KB
Format:
Adobe Portable Document Format

Collections