Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling

dc.authorscopusid 36015912400
dc.authorscopusid 23974021700
dc.contributor.author Yerlikaya-Ozkurt, Fatma
dc.contributor.author Taylan, Pakize
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-12-05T20:48:52Z
dc.date.available 2024-12-05T20:48:52Z
dc.date.issued 2025
dc.department Atılım University en_US
dc.department-temp [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkiye en_US
dc.description.abstract Outlier detection and variable selection are among main objectives of statistical analysis. In our study, we address the outlier problem for classification by using the Mean Shift Outlier Model (CLMSOM). Since the MSOM has more coefficients than the linear regression model, the complexity of the model MSOM is high. Therefore, we consider feature selection for MSOM by using fused Lasso (FLasso), which is beneficial and helpful in the cases where the number of explanatory variables or features is greater than the sample size. FLasso is penalizing both the coefficients and their successive differences by the L-1-norm, and it allows sparsity for both of them, while Lasso only allows the coefficients by considering a nonsmooth optimization problem. In this study, we take into account Iterated Ridge approximation which enables us to use a smooth optimization for FLasso problem. Generated smooth optimization problem is solved by using one of continuous optimization techniques called Conic Quadratic Programming (CQP), which is enabling the utilization of interior point methods. The newly developed method is called Conic FLasso for classification by MSOM (C-FLasso-CLMSOM) and is applied to real world data set to show its performance. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.citationcount 0
dc.identifier.doi 10.3934/jdg.2024002
dc.identifier.endpage 23 en_US
dc.identifier.issn 2164-6066
dc.identifier.issn 2164-6074
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85210021480
dc.identifier.scopusquality Q3
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.3934/jdg.2024002
dc.identifier.uri https://hdl.handle.net/20.500.14411/10284
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:001144952700001
dc.institutionauthor Yerlikaya Özkurt, Fatma
dc.language.iso en en_US
dc.publisher Amer inst Mathematical Sciences-aims en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Outlier en_US
dc.subject fused Lasso en_US
dc.subject mean shift en_US
dc.subject classification en_US
dc.subject convex optimization en_US
dc.title Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isAuthorOfPublication.latestForDiscovery 3fb69d84-e2ef-4946-921b-dfeb392badec
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 12c9377e-b7fe-4600-8326-f3613a05653d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhancing classification modeling through feature selection and smoothness A conic fused lasso approach integrated with mean shift outlier modelling.pdf
Size:
549 KB
Format:
Adobe Portable Document Format

Collections