Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling

dc.authorscopusid36015912400
dc.authorscopusid23974021700
dc.contributor.authorYerlikaya-Ozkurt, Fatma
dc.contributor.authorTaylan, Pakize
dc.date.accessioned2024-12-05T20:48:52Z
dc.date.available2024-12-05T20:48:52Z
dc.date.issued2025
dc.departmentAtılım Universityen_US
dc.department-temp[Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkiyeen_US
dc.description.abstractOutlier detection and variable selection are among main objectives of statistical analysis. In our study, we address the outlier problem for classification by using the Mean Shift Outlier Model (CLMSOM). Since the MSOM has more coefficients than the linear regression model, the complexity of the model MSOM is high. Therefore, we consider feature selection for MSOM by using fused Lasso (FLasso), which is beneficial and helpful in the cases where the number of explanatory variables or features is greater than the sample size. FLasso is penalizing both the coefficients and their successive differences by the L-1-norm, and it allows sparsity for both of them, while Lasso only allows the coefficients by considering a nonsmooth optimization problem. In this study, we take into account Iterated Ridge approximation which enables us to use a smooth optimization for FLasso problem. Generated smooth optimization problem is solved by using one of continuous optimization techniques called Conic Quadratic Programming (CQP), which is enabling the utilization of interior point methods. The newly developed method is called Conic FLasso for classification by MSOM (C-FLasso-CLMSOM) and is applied to real world data set to show its performance.en_US
dc.description.woscitationindexEmerging Sources Citation Index
dc.identifier.citationcount0
dc.identifier.doi10.3934/jdg.2024002
dc.identifier.endpage23en_US
dc.identifier.issn2164-6066
dc.identifier.issn2164-6074
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85210021480
dc.identifier.scopusqualityQ3
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.3934/jdg.2024002
dc.identifier.urihttps://hdl.handle.net/20.500.14411/10284
dc.identifier.volume12en_US
dc.identifier.wosWOS:001144952700001
dc.language.isoenen_US
dc.publisherAmer inst Mathematical Sciences-aimsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount1
dc.subjectOutlieren_US
dc.subjectfused Lassoen_US
dc.subjectmean shiften_US
dc.subjectclassificationen_US
dc.subjectconvex optimizationen_US
dc.titleEnhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modellingen_US
dc.typeArticleen_US
dc.wos.citedbyCount1
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhancing classification modeling through feature selection and smoothness A conic fused lasso approach integrated with mean shift outlier modelling.pdf
Size:
549 KB
Format:
Adobe Portable Document Format

Collections