Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling
| dc.contributor.author | Yerlikaya-Ozkurt, Fatma | |
| dc.contributor.author | Taylan, Pakize | |
| dc.date.accessioned | 2024-12-05T20:48:52Z | |
| dc.date.available | 2024-12-05T20:48:52Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Outlier detection and variable selection are among main objectives of statistical analysis. In our study, we address the outlier problem for classification by using the Mean Shift Outlier Model (CLMSOM). Since the MSOM has more coefficients than the linear regression model, the complexity of the model MSOM is high. Therefore, we consider feature selection for MSOM by using fused Lasso (FLasso), which is beneficial and helpful in the cases where the number of explanatory variables or features is greater than the sample size. FLasso is penalizing both the coefficients and their successive differences by the L-1-norm, and it allows sparsity for both of them, while Lasso only allows the coefficients by considering a nonsmooth optimization problem. In this study, we take into account Iterated Ridge approximation which enables us to use a smooth optimization for FLasso problem. Generated smooth optimization problem is solved by using one of continuous optimization techniques called Conic Quadratic Programming (CQP), which is enabling the utilization of interior point methods. The newly developed method is called Conic FLasso for classification by MSOM (C-FLasso-CLMSOM) and is applied to real world data set to show its performance. | en_US |
| dc.identifier.doi | 10.3934/jdg.2024002 | |
| dc.identifier.issn | 2164-6066 | |
| dc.identifier.issn | 2164-6074 | |
| dc.identifier.scopus | 2-s2.0-85210021480 | |
| dc.identifier.uri | https://doi.org/10.3934/jdg.2024002 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/10284 | |
| dc.language.iso | en | en_US |
| dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
| dc.relation.ispartof | Journal of Dynamics and Games | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Outlier | en_US |
| dc.subject | fused Lasso | en_US |
| dc.subject | mean shift | en_US |
| dc.subject | classification | en_US |
| dc.subject | convex optimization | en_US |
| dc.title | Enhancing Classification Modeling Through Feature Selection and Smoothness: a Conic-Fused Lasso Approach Integrated With Mean Shift Outlier Modelling | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 36015912400 | |
| gdc.author.scopusid | 23974021700 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Yerlikaya-Ozkurt, Fatma] Atilim Univ, Dept Ind Engn, Ankara, Turkiye; [Taylan, Pakize] Dicle Univ, Dept Math, Diyarbakir, Turkiye | en_US |
| gdc.description.endpage | 23 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.volume | 12 | en_US |
| gdc.description.woscitationindex | Emerging Sources Citation Index | |
| gdc.description.wosquality | Q4 | |
| gdc.identifier.openalex | W4390701565 | |
| gdc.identifier.wos | WOS:001144952700001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | mean shift | |
| gdc.oaire.keywords | Convex programming | |
| gdc.oaire.keywords | Mean shift | |
| gdc.oaire.keywords | Ridge regression; shrinkage estimators (Lasso) | |
| gdc.oaire.keywords | convex optimization | |
| gdc.oaire.keywords | Linear regression; mixed models | |
| gdc.oaire.keywords | classification | |
| gdc.oaire.keywords | Outlier | |
| gdc.oaire.keywords | fused Lasso | |
| gdc.oaire.keywords | Fused lasso | |
| gdc.oaire.keywords | Classification | |
| gdc.oaire.keywords | outlier | |
| gdc.oaire.keywords | Convex optimization | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.53290046 | |
| gdc.openalex.normalizedpercentile | 0.68 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Yerlikaya Özkurt, Fatma | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
| relation.isAuthorOfPublication.latestForDiscovery | 3fb69d84-e2ef-4946-921b-dfeb392badec | |
| relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
| relation.isOrgUnitOfPublication | 4abda634-67fd-417f-bee6-59c29fc99997 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12c9377e-b7fe-4600-8326-f3613a05653d |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Enhancing classification modeling through feature selection and smoothness A conic fused lasso approach integrated with mean shift outlier modelling.pdf
- Size:
- 549 KB
- Format:
- Adobe Portable Document Format
