Cassava Disease Recognition From Low-Quality Images Using Enhanced Data Augmentation Model and Deep Learning

dc.contributor.author Abayomi-Alli, Olusola Oluwakemi
dc.contributor.author Damasevicius, Robertas
dc.contributor.author Misra, Sanjay
dc.contributor.author Maskeliunas, Rytis
dc.date.accessioned 2024-07-05T15:19:44Z
dc.date.available 2024-07-05T15:19:44Z
dc.date.issued 2021
dc.description Misra, Sanjay/0000-0002-3556-9331; Damaševičius, Robertas/0000-0001-9990-1084; Maskeliunas, Rytis/0000-0002-2809-2213; en_US
dc.description.abstract Improvement of deep learning algorithms in smart agriculture is important to support the early detection of plant diseases, thereby improving crop yields. Data acquisition for machine learning applications is an expensive task due to the requirements of expert knowledge and professional equipment. The usability of any application in a real-world setting is often limited by unskilled users and the limitations of devices used for acquiring images for classification. We aim to improve the accuracy of deep learning models on low-quality test images using data augmentation techniques for neural network training. We generate synthetic images with a modified colour value distribution to expand the trainable image colour space and to train the neural network to recognize important colour-based features, which are less sensitive to the deficiencies of low-quality images such as those affected by blurring or motion. This paper introduces a novel image colour histogram transformation technique for generating synthetic images for data augmentation in image classification tasks. The approach is based on the convolution of the Chebyshev orthogonal functions with the probability distribution functions of image colour histograms. To validate our proposed model, we used four methods (resolution down-sampling, Gaussian blurring, motion blur, and overexposure) for reducing image quality from the Cassava leaf disease dataset. The results based on the modified MobileNetV2 neural network showed a statistically significant improvement of cassava leaf disease recognition accuracy on lower-quality testing images when compared with the baseline network. The model can be easily deployed for recognizing and detecting cassava leaf diseases in lower quality images, which is a major factor in practical data acquisition. en_US
dc.identifier.doi 10.1111/exsy.12746
dc.identifier.issn 0266-4720
dc.identifier.issn 1468-0394
dc.identifier.scopus 2-s2.0-85107720596
dc.identifier.uri https://doi.org/10.1111/exsy.12746
dc.identifier.uri https://hdl.handle.net/20.500.14411/2013
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.ispartof Expert Systems
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject data augmentation en_US
dc.subject deep learning en_US
dc.subject imperfect data en_US
dc.subject plant disease recognition en_US
dc.subject smart agriculture en_US
dc.subject transfer learning en_US
dc.title Cassava Disease Recognition From Low-Quality Images Using Enhanced Data Augmentation Model and Deep Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Damaševičius, Robertas/0000-0001-9990-1084
gdc.author.id Maskeliunas, Rytis/0000-0002-2809-2213
gdc.author.scopusid 56811478400
gdc.author.scopusid 6603451290
gdc.author.scopusid 56962766700
gdc.author.scopusid 27467587600
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Damaševičius, Robertas/E-1387-2017
gdc.author.wosid Maskeliunas, Rytis/J-7173-2017
gdc.author.wosid Abayomi-Alli, Olusola Oluwakemi/ABC-2838-2021
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Abayomi-Alli, Olusola Oluwakemi; Damasevicius, Robertas] Kaunas Univ Technol, Dept Software Engn, Griciupio Gatve 9, LT-51373 Kaunas, Lithuania; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Otaru, Nigeria; [Maskeliunas, Rytis] Silesian Tech Univ, Fac Appl Math, Gliwice, Poland; [Maskeliunas, Rytis] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 38 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3167324598
gdc.identifier.wos WOS:000661179500001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 116.0
gdc.oaire.influence 1.3364592E-8
gdc.oaire.isgreen true
gdc.oaire.popularity 1.2451137E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 19.864994
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 115
gdc.plumx.crossrefcites 56
gdc.plumx.mendeley 135
gdc.plumx.scopuscites 160
gdc.scopus.citedcount 160
gdc.virtual.author Mısra, Sanjay
gdc.wos.citedcount 102
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections