Lepton Flavor Universality Violation in Semileptonic Tree Level Weak Transitions

No Thumbnail Available

Date

2019

Authors

Azizi, K.
Saraç Oymak, Yasemin
Sarac, Y.
Sundu, H.

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Physics Group
Atılım University Physics Division was established with the purpose of educating the first-year students of the Engineering and other Departments by providing the general physics courses and, in addition, to make scientific and technological researches at the universal level. Now adays, Physics Division provide the students of Engineering, School of Aviation and Mathematics Departments with the general physics lectures having international education quality. We have in the Group the facilities of the mechanics and electricity laboratories, where the students have the opportunity to realize the practice of the theoretical knowledge in physics. Beside the compulsory courses (General Physics I and General Physics II) there are also elective courses offered by the Group. The faculty members in the Group, whose research interests and fields are given in web-page of the Group in details, perform theoretical as well as experimental researches and make publications in SSC-index journals. Graduate program, with master of sciences and doctorate degree courses and theses, is offered in different scientific areas (for details, see the web-page of the Division). In the Physcis Division there are 6 faculty members, five research assistants, and one technician.

Journal Issue

Abstract

The recent deviations of the experimental data on some parameters of the tree-level semileptonic B and B-c mesons decays from the standard model (SM) predictions indicate considerable violations of the lepton flavor universality, and as a result possible new physics (NP) effects. To better understand the possible NP effects it is necessary to study deeply the physical quantities defining these decays from many aspects. The calculations of the physical quantities require the determinations of the hadronic form factors entering the matrix elements of the considered transitions as the main inputs. We calculate the form factors governing the tree-level B-c -> J/psi l nu and B-c -> eta(c)l nu transitions within the QCD sum rules method. The obtained form factors are used in the calculations of the branching ratios (BRs) of the B-c -> J/psi l nu and B-c -> eta(c)l nu transitions as well as R(J/psi) and R(eta(c)). Our result on R(J/psi) supports the present tension between the SM theory prediction and the experimental data. Our result on R(eta(c)) can be checked in future experiments.

Description

Azizi, Kazem/0000-0003-3741-2167;

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

24

WoS Q

Q1

Scopus Q

Q1

Source

Volume

99

Issue

11

Start Page

End Page

Collections