Generalized Transportation Cost Spaces
dc.authorscopusid | 35610828900 | |
dc.authorscopusid | 7006870450 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.author | Ostrovskii, Mikhail I. | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:41:38Z | |
dc.date.available | 2024-07-05T15:41:38Z | |
dc.date.issued | 2019 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Ostrovskii, Mikhail I.] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA | en_US |
dc.description.abstract | The paper is devoted to the geometry of transportation cost spaces and their generalizations introduced by Melleray et al. (Fundam Math 199(2):177-194, 2008). Transportation cost spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein 1 spaces. In this work, the existence of metric spaces with the following properties is proved: (1) uniformly discrete metric spaces such that transportation cost spaces on them do not contain isometric copies of l(1), this result answers a question raised by Cuth and Johanis (Proc Am Math Soc 145(8):3409-3421, 2017); (2) locally finite metric spaces which admit isometric embeddings only into Banach spaces containing isometric copies of l(1); (3) metric spaces for which the double-point norm is not a norm. In addition, it is proved that the double-point norm spaces corresponding to trees are close to l(infinity)(d) of the corresponding dimension, and that for all finite metric spaces M, except a very special class, the infimum of all seminorms for which the embedding of M into the corresponding seminormed space is isometric, is not a seminorm. | en_US |
dc.description.sponsorship | National Science Foundation [NSF DMS-1700176] | en_US |
dc.description.sponsorship | The second-named author gratefully acknowledges the support by National Science Foundation Grant NSF DMS-1700176. We would like to thank the referee for the valuable suggestions and corrections. | en_US |
dc.identifier.citation | 9 | |
dc.identifier.doi | 10.1007/s00009-019-1433-8 | |
dc.identifier.issn | 1660-5446 | |
dc.identifier.issn | 1660-5454 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85075802841 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s00009-019-1433-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3463 | |
dc.identifier.volume | 16 | en_US |
dc.identifier.wos | WOS:000508589800002 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Arens-Eells space | en_US |
dc.subject | Banach space | en_US |
dc.subject | distortion of a bilipschitz embedding | en_US |
dc.subject | Earth mover distance | en_US |
dc.subject | Kantorovich-Rubinstein distance | en_US |
dc.subject | Lipschitz-free space | en_US |
dc.subject | locally finite metric space | en_US |
dc.subject | transportation cost | en_US |
dc.subject | Wasserstein distance | en_US |
dc.title | Generalized Transportation Cost Spaces | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |