Generalized Transportation Cost Spaces
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.author | Ostrovskii, Mikhail I. | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:41:38Z | |
| dc.date.available | 2024-07-05T15:41:38Z | |
| dc.date.issued | 2019 | |
| dc.description.abstract | The paper is devoted to the geometry of transportation cost spaces and their generalizations introduced by Melleray et al. (Fundam Math 199(2):177-194, 2008). Transportation cost spaces are also known as Arens-Eells, Lipschitz-free, or Wasserstein 1 spaces. In this work, the existence of metric spaces with the following properties is proved: (1) uniformly discrete metric spaces such that transportation cost spaces on them do not contain isometric copies of l(1), this result answers a question raised by Cuth and Johanis (Proc Am Math Soc 145(8):3409-3421, 2017); (2) locally finite metric spaces which admit isometric embeddings only into Banach spaces containing isometric copies of l(1); (3) metric spaces for which the double-point norm is not a norm. In addition, it is proved that the double-point norm spaces corresponding to trees are close to l(infinity)(d) of the corresponding dimension, and that for all finite metric spaces M, except a very special class, the infimum of all seminorms for which the embedding of M into the corresponding seminormed space is isometric, is not a seminorm. | en_US |
| dc.description.sponsorship | National Science Foundation [NSF DMS-1700176] | en_US |
| dc.description.sponsorship | The second-named author gratefully acknowledges the support by National Science Foundation Grant NSF DMS-1700176. We would like to thank the referee for the valuable suggestions and corrections. | en_US |
| dc.identifier.doi | 10.1007/s00009-019-1433-8 | |
| dc.identifier.issn | 1660-5446 | |
| dc.identifier.issn | 1660-5454 | |
| dc.identifier.scopus | 2-s2.0-85075802841 | |
| dc.identifier.uri | https://doi.org/10.1007/s00009-019-1433-8 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/3463 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Basel Ag | en_US |
| dc.relation.ispartof | Mediterranean Journal of Mathematics | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Arens-Eells space | en_US |
| dc.subject | Banach space | en_US |
| dc.subject | distortion of a bilipschitz embedding | en_US |
| dc.subject | Earth mover distance | en_US |
| dc.subject | Kantorovich-Rubinstein distance | en_US |
| dc.subject | Lipschitz-free space | en_US |
| dc.subject | locally finite metric space | en_US |
| dc.subject | transportation cost | en_US |
| dc.subject | Wasserstein distance | en_US |
| dc.title | Generalized Transportation Cost Spaces | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.scopusid | 7006870450 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey; [Ostrovskii, Mikhail I.] St Johns Univ, Dept Math & Comp Sci, 8000 Utopia Pkwy, Queens, NY 11439 USA | en_US |
| gdc.description.issue | 6 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.volume | 16 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2918723355 | |
| gdc.identifier.wos | WOS:000508589800002 | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 3.282033E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Mathematics - Functional Analysis | |
| gdc.oaire.keywords | Mathematics - Metric Geometry | |
| gdc.oaire.keywords | FOS: Mathematics | |
| gdc.oaire.keywords | Metric Geometry (math.MG) | |
| gdc.oaire.keywords | Functional Analysis (math.FA) | |
| gdc.oaire.keywords | 46B03, 46B04, 46B20, 46B85, 91B32 | |
| gdc.oaire.popularity | 8.133302E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 2.326 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 8 | |
| gdc.plumx.crossrefcites | 2 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.scopus.citedcount | 12 | |
| gdc.wos.citedcount | 13 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |