Optimized Porous Carbon Particles From Sucrose and Their Polyethyleneimine Modifications for Enhanced Co<sub>2</Sub> Capture

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Airframe and Powerplant Maintenance
(2012)
The Atılım University Department of Airframe and Powerplant Maintenance has been offering Civil Aviation education in English since 2012. In an effort to provide the best level of education, ATILIM UNIVERSITY demonstrated its merit as a role model in Civil Aviation Education last year by being granted a SHY 147 certificate with the status of “Approved Aircraft Maintenance Training Institution” by the General Directorate of Civil Aviation. The SHY 147 is a certificate for Approved Aircraft Maintenance Training Institutions. It is granted to institutions where training programs have undergone inspection, and the quality of the education offered has been approved by the General Directorate of Civil Aviation. With our Civil Aviation Training Center at Esenboğa Airport (our hangar), and the two Cessna-337 planes with double piston engines both of which are fully operational, as well our Beechcraft C90 Kingait plaine with double Turboprop engines, Atılım University is an institution to offer hands-on technical training in civil aviation, and one that strives to take the education it offers to the extremes in terms of technology. The Atılım university Graduate School Department of Airframe and Powerplant Maintenance is a fully-equipped civil aviation school to complement its theoretical education with hands-on training using planes of various kinds. Even before their graduation, most of our students are hired in Turkey’s most prestigious institutions in such a rapidly-developing sector. We are looking forward to welcoming you at this modern and contemporary institution for your education in civil aviation.

Journal Issue

Abstract

Carbon dioxide (CO2), one of the primary greenhouse gases, plays a key role in global warming and is one of the culprits in the climate change crisis. Therefore, the use of appropriate CO2 capture and storage technologies is of significant importance for the future of planet Earth due to atmospheric, climate, and environmental concerns. A cleaner and more sustainable approach to CO2 capture and storage using porous materials, membranes, and amine-based sorbents could offer excellent possibilities. Here, sucrose-derived porous carbon particles (PCPs) were synthesized as adsorbents for CO2 capture. Next, these PCPs were modified with branched- and linear-polyethyleneimine (B-PEI and L-PEI) as B-PEI-PCP and L-PEI-PCP, respectively. These PCPs and their PEI-modified forms were then used to prepare metal nanoparticles such as Co, Cu, and Ni in situ as M@PCP and M@L/B-PEI-PCP (M: Ni, Co, and Cu). The presence of PEI on the PCP surface enables new amine functional groups, known for high CO2 capture ability. The presence of metal nanoparticles in the structure may be used as a catalyst to convert the captured CO2 into useful products, e.g., fuels or other chemical compounds, at high temperatures. It was found that B-PEI-PCP has a larger surface area and higher CO2 capture capacity with a surface area of 32.84 m(2)/g and a CO2 capture capacity of 1.05 mmol CO2/g adsorbent compared to L-PEI-PCP. Amongst metal-nanoparticle-embedded PEI-PCPs (M@PEI-PCPs, M: Ni, Co, Cu), Ni@L-PEI-PCP was found to have higher CO2 capture capacity, 0.81 mmol CO2/g adsorbent, and a surface area of 225 m(2)/g. These data are significant as they will steer future studies for the conversion of captured CO2 into useful fuels/chemicals.

Description

Keywords

porous carbon particles, amine modified, CO2 capture, metal-nanoparticle-embedded adsorbent

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Q2

Source

Volume

8

Issue

9

Start Page

End Page

Collections