Photoelectronic, optical and electrical properties of TlInS<sub>2</sub> single crystals

No Thumbnail Available

Date

2003

Authors

Qasrawı, Atef Fayez Hasan
Gasanly, NM

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

To specify the donor energy levels in TlInS2 single crystals, the dark electrical resistivity, photoconductivity and Hall measurements were carried out in the temperature range of 100-400 K, 110-350 K and 170-400 K, respectively. The Hall measurements revealed that the crystals exhibit an anomalous behavior of Hall voltage by changing sign (from p-type to n-type conductivity) at 315 K. By means of the temperature dependence of dark electrical resistivity, Hall coefficient and photocurrent measurements the donor energy levels located at 360, 280, 152 and 112 meV were detected. The photocurrent-illumination intensity dependence follows the law I-Ph proportional to F-gamma with gamma being 1.0 (linear), 0.5 (sublinear), 1.0 (linear) and 1.3 (supralinear) at low, moderate, high and very high illumination intensities indicating the monomolecular in the bulk, bimolecular and strong recombination at the surface, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature (T-m) 245 K. T is observed to shift to higher temperature as F increases, and disappears in the region where I-Ph-F dependence is supralinear. The phenomenon is attributed to the exchange in the behavior of the sensitizing and recombination centers. (C) 2003 WILEY-VCH Verlag GmbH & Co. KGaA. Weinheim.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

22

WoS Q

Scopus Q

Source

Volume

199

Issue

2

Start Page

277

End Page

283

Collections