Yapay sinir ağı ile meme kanseri tahmin

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

Meme kanseri dünyada kadınlar arasında başlıca ölüm nedeni olarak yer almaktadır. Bu çalışmanın amacı, ameliyat sonrası meme kanseri tekrarını tahmin eden gürbüz bir yöntem bulmaktır. Bu çalışmada 194 örnek içeren Wisconsin Prognostik Meme Kanseri veritabanı kullanılmıştır. Meme kanseri ile ilgili gerçek veriler içerdiği için bu veritabanı seçilmiştir. Bu tezde, meme kanseri tahminini için çok katmanlı perceptron ve genelleştirilmiş regresyon sinir ağı işe koşulmuştur. Yapay sinir ağları ile ulaşılan sonuçlar ayrıca destek vektör makinesi ile elde edilenlerle karşılaştırılmıştır. En iyi sonuç, genelleştirilmiş regresyon sinir ağı yöntemi kullanıldığında bulunmuştur. Sonuçlar ve gelecek çalışmalar tartışılmıştır.
Breast cancer is ranked the primary cause of death among women in the world. The goal of this study is to find a robust method for predicting recurrence and non-recurrence of breast cancer after surgery. The Wisconsin Prognostic Breast Cancer (WPBC) database which includes 194 samples is used in this study. The reason for choosing this database is due to the fact that it contains real data regarding breast cancer. In this thesis, breast cancer prediction is implemented by using Multi-Layer Perceptron (MLP) and Generalized Regression Neural Network (GRNN). The results of the artificial neural networks are also compared with the ones obtained by Support Vector Machine (SVM). The best performance is from obtained when GRNN method is used. The results and future work are discussed.

Description

Keywords

Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Computer Engineering and Computer Science and Control, Yapay sinir ağları, Artificial neural networks

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

98