An Automata Networks Based Preprocessing Technique for Artificial Neural Network Modelling of Primary Production Levels in Reservoirs

dc.authorid tüzün, ilhami/0000-0003-4091-976X
dc.authorid Kilic, Hurevren/0000-0002-9058-0365
dc.authorid KILIC, HUREVREN/0000-0003-2647-8451
dc.authorid BASARAN KANKILIC, Gokben/0000-0001-7551-4899
dc.authorscopusid 16642447800
dc.authorscopusid 7004369411
dc.authorscopusid 8950036600
dc.authorscopusid 7004131741
dc.authorscopusid 8950036200
dc.authorwosid Kilic, Hurevren/F-8253-2012
dc.authorwosid tüzün, ilhami/A-4461-2018
dc.authorwosid Kilic, Hurevren/V-4236-2019
dc.authorwosid Soyupak, Selçuk/A-9965-2008
dc.authorwosid KANKILIÇ, Gökben BAŞARAN/AAI-6605-2021
dc.contributor.author Kilic, Hurevren
dc.contributor.author Soyupak, Selcuk
dc.contributor.author Tuzun, Ilhami
dc.contributor.author Ince, Ozlem
dc.contributor.author Basaran, Gokben
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T14:33:49Z
dc.date.available 2024-07-05T14:33:49Z
dc.date.issued 2007
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey; Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Kirikkale Univ, Fac Arts & Sci, Dept Biol, Kirikkale, Turkey en_US
dc.description tüzün, ilhami/0000-0003-4091-976X; Kilic, Hurevren/0000-0002-9058-0365; KILIC, HUREVREN/0000-0003-2647-8451; BASARAN KANKILIC, Gokben/0000-0001-7551-4899 en_US
dc.description.abstract Primary production in lakes and reservoirs develops as a result of complex reactions and interactions. Artificial neural networks (ANN) emerges as an approach in quantification of primary productivity in reservoirs. Almost all of the past ANN applications employed input data matrices whose vectors represent either water quality parameters or environmental characteristics. Most of the time, the components of input matrices are determined using expert opinion that implies possible factors that affect output vector. Major disadvantage of this approach is the possibility of ending-up with an input matrix that may have high correlations between some of its components. In this paper, an automata networks (AN) based preprocessing technique was developed to select suitable and appropriate constituents of input matrix to eliminate redundancy and to enhance calculation efficiency. The proposed technique specifically provides an apriori rough behavioral modeling through identification of minimal AN interaction topology. Predictive ANN models of primary production levels were developed for a reservoir following AN based pre-modeling step. The achieved levels of model precisions and performances were acceptable: the calculated root mean square error values (RMSE) were low; a correlation coefficient (R) as high as 0.83 was achieved with an ANN model of a specific structure. (c) 2006 Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1016/j.ecolmodel.2006.09.026
dc.identifier.endpage 368 en_US
dc.identifier.issn 0304-3800
dc.identifier.issn 1872-7026
dc.identifier.issue 3-4 en_US
dc.identifier.scopus 2-s2.0-33846653402
dc.identifier.startpage 359 en_US
dc.identifier.uri https://doi.org/10.1016/j.ecolmodel.2006.09.026
dc.identifier.uri https://hdl.handle.net/20.500.14411/958
dc.identifier.volume 201 en_US
dc.identifier.wos WOS:000244598300011
dc.identifier.wosquality Q2
dc.institutionauthor Kılıç, Hürevren
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 6
dc.subject automata networks en_US
dc.subject behavioral modeling en_US
dc.subject integer linear programming en_US
dc.subject quasi newton method en_US
dc.subject primary productivity en_US
dc.subject reservoirs en_US
dc.title An Automata Networks Based Preprocessing Technique for Artificial Neural Network Modelling of Primary Production Levels in Reservoirs en_US
dc.type Article en_US
dc.wos.citedbyCount 4
dspace.entity.type Publication
relation.isAuthorOfPublication 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isAuthorOfPublication.latestForDiscovery 27e7437e-ade6-4ff4-9395-851c0ee9f537
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections