<i>q</I>-bernstein Polynomials of the Cauchy Kernel

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:34:05Z
dc.date.available2024-07-05T14:34:05Z
dc.date.issued2008
dc.departmentAtılım Universityen_US
dc.department-tempAtilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractDue to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved.en_US
dc.identifier.citationcount16
dc.identifier.doi10.1016/j.amc.2007.08.066
dc.identifier.endpage270en_US
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-40149083412
dc.identifier.startpage261en_US
dc.identifier.urihttps://doi.org/10.1016/j.amc.2007.08.066
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1018
dc.identifier.volume198en_US
dc.identifier.wosWOS:000254254300022
dc.identifier.wosqualityQ1
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherElsevier Science incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount16
dc.subjectq-Bernstein polynomialsen_US
dc.subjectCauchy kernelen_US
dc.subjectanalytic functionen_US
dc.subjectconvergenceen_US
dc.title<i>q</I>-bernstein Polynomials of the Cauchy Kernelen_US
dc.typeArticleen_US
dc.wos.citedbyCount16
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections