<i>q</I>-bernstein Polynomials of the Cauchy Kernel
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:34:05Z | |
| dc.date.available | 2024-07-05T14:34:05Z | |
| dc.date.issued | 2008 | |
| dc.description.abstract | Due to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.amc.2007.08.066 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.issn | 1873-5649 | |
| dc.identifier.scopus | 2-s2.0-40149083412 | |
| dc.identifier.uri | https://doi.org/10.1016/j.amc.2007.08.066 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1018 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science inc | en_US |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | Cauchy kernel | en_US |
| dc.subject | analytic function | en_US |
| dc.subject | convergence | en_US |
| dc.title | <i>q</I>-bernstein Polynomials of the Cauchy Kernel | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 270 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 261 | en_US |
| gdc.description.volume | 198 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2013819020 | |
| gdc.identifier.wos | WOS:000254254300022 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.824826E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.3492251E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.899 | |
| gdc.openalex.normalizedpercentile | 0.69 | |
| gdc.opencitations.count | 9 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.scopuscites | 16 | |
| gdc.scopus.citedcount | 16 | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |