<i>q</I>-bernstein Polynomials of the Cauchy Kernel
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:34:05Z | |
dc.date.available | 2024-07-05T14:34:05Z | |
dc.date.issued | 2008 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Due to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citationcount | 16 | |
dc.identifier.doi | 10.1016/j.amc.2007.08.066 | |
dc.identifier.endpage | 270 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issn | 1873-5649 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-40149083412 | |
dc.identifier.startpage | 261 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2007.08.066 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1018 | |
dc.identifier.volume | 198 | en_US |
dc.identifier.wos | WOS:000254254300022 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 16 | |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | Cauchy kernel | en_US |
dc.subject | analytic function | en_US |
dc.subject | convergence | en_US |
dc.title | <i>q</I>-bernstein Polynomials of the Cauchy Kernel | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 16 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |