LYAPUNOV TYPE INEQUALITIES FOR nTH ORDER FORCED DIFFERENTIAL EQUATIONS WITH MIXED NONLINEARITIES
dc.authorid | Agarwal, Ravi P/0000-0003-0075-1704 | |
dc.authorscopusid | 36013313700 | |
dc.authorscopusid | 9434099700 | |
dc.contributor.author | Agarwal, Ravi P. | |
dc.contributor.author | Ozbekler, Abdullah | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:31:24Z | |
dc.date.available | 2024-07-05T14:31:24Z | |
dc.date.issued | 2016 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Agarwal, Ravi P.] Texas A&M Univ Kingsville, Dept Math, 700 Univ Blvd, Kingsville, TX 78363 USA; [Ozbekler, Abdullah] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description | Agarwal, Ravi P/0000-0003-0075-1704 | en_US |
dc.description.abstract | In the case of oscillatory potentials, we present Lyapunov type inequalities for nth order forced differential equations of the form x((n))(t) + Sigma(m)(j=1) qj (t)vertical bar x(t)vertical bar(alpha j-1)x(t)= f(t) satisfying the boundary conditions x(a(i)) = x(1)(a(i)) = x(11)(ai) = center dot center dot center dot = x((ki))(ai) = 0; i = 1, 2,..., r, where a(1) < a(2) < ... < a(r), 0 <= k(i) and Sigma(r)(j=1) k(j) + r = n: r >= 2. No sign restriction is imposed on the forcing term and the nonlinearities satisfy 0 < alpha(l) < ... < alpha a(j) < 1 < alpha a(j+1) < ... < alpha(m) < 2. The obtained inequalities generalize and compliment the existing results in the literature. | en_US |
dc.description.sponsorship | TUBITAK (The Scientific and Technological Research Council of Turkey) | en_US |
dc.description.sponsorship | This work was carried out when the second author was on academic leave, visiting TAMUK (Texas A&M University-Kingsville) and he wishes to thank TAMUK. This work is partially supported by TUBITAK (The Scientific and Technological Research Council of Turkey). | en_US |
dc.identifier.citation | 8 | |
dc.identifier.doi | 10.3934/cpaa.2016037 | |
dc.identifier.endpage | 2300 | en_US |
dc.identifier.issn | 1534-0392 | |
dc.identifier.issn | 1553-5258 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-84990198570 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 2281 | en_US |
dc.identifier.uri | https://doi.org/10.3934/cpaa.2016037 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/676 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000389636100014 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Özbekler, Abdullah | |
dc.language.iso | en | en_US |
dc.publisher | Amer inst Mathematical Sciences-aims | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lyapunov type inequality | en_US |
dc.subject | forcing term | en_US |
dc.subject | mixed nonlinear | en_US |
dc.subject | sub-linear | en_US |
dc.subject | super-linear | en_US |
dc.title | LYAPUNOV TYPE INEQUALITIES FOR nTH ORDER FORCED DIFFERENTIAL EQUATIONS WITH MIXED NONLINEARITIES | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | ae65c9f5-e938-41ab-b335-fed50015a138 | |
relation.isAuthorOfPublication.latestForDiscovery | ae65c9f5-e938-41ab-b335-fed50015a138 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |