Contact-Free Measurement of Respiratory Rate Using Infrared and Vibration Sensors
| dc.contributor.author | Erden, Fatih | |
| dc.contributor.author | Alkar, Ali Ziya | |
| dc.contributor.author | Cetin, Ahmet Enis | |
| dc.date.accessioned | 2024-07-05T14:32:14Z | |
| dc.date.available | 2024-07-05T14:32:14Z | |
| dc.date.issued | 2015 | |
| dc.description | Erden, Fatih/0000-0002-1708-3063; Alkar, Ali Ziya/0000-0002-5880-2423 | en_US |
| dc.description.abstract | Respiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors. (C) 2015 Elsevier B.V. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.infrared.2015.09.005 | |
| dc.identifier.issn | 1350-4495 | |
| dc.identifier.issn | 1879-0275 | |
| dc.identifier.scopus | 2-s2.0-84942432814 | |
| dc.identifier.uri | https://doi.org/10.1016/j.infrared.2015.09.005 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/775 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science Bv | en_US |
| dc.relation.ispartof | Infrared Physics & Technology | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Average magnitude difference function (AMDF) | en_US |
| dc.subject | Empirical mode decomposition (EMD) | en_US |
| dc.subject | PIR sensor | en_US |
| dc.subject | Respiratory rate | en_US |
| dc.subject | Vibration sensor | en_US |
| dc.subject | Wavelet transform | en_US |
| dc.title | Contact-Free Measurement of Respiratory Rate Using Infrared and Vibration Sensors | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Erden, Fatih/0000-0002-1708-3063 | |
| gdc.author.id | Alkar, Ali Ziya/0000-0002-5880-2423 | |
| gdc.author.scopusid | 57189290485 | |
| gdc.author.scopusid | 6506200184 | |
| gdc.author.scopusid | 57197548971 | |
| gdc.author.wosid | Erden, Fatih/B-3968-2015 | |
| gdc.author.wosid | ALKAR, ALI ZİYA/G-5897-2013 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Erden, Fatih] Atilim Univ, Dept Elect & Elect Engn, TR-06836 Ankara, Turkey; [Alkar, Ali Ziya] Hacettepe Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey; [Cetin, Ahmet Enis] Bilkent Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey | en_US |
| gdc.description.endpage | 94 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 88 | en_US |
| gdc.description.volume | 73 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W1716630211 | |
| gdc.identifier.wos | WOS:000366066100012 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 5.0 | |
| gdc.oaire.influence | 3.4925023E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Patient monitoring | |
| gdc.oaire.keywords | Signal processing | |
| gdc.oaire.keywords | Respiratory rate | |
| gdc.oaire.keywords | Ventilation exhausts | |
| gdc.oaire.keywords | 621 | |
| gdc.oaire.keywords | Wavelet decomposition | |
| gdc.oaire.keywords | Wavelet analysis | |
| gdc.oaire.keywords | Vibration sensor | |
| gdc.oaire.keywords | Laptop computers | |
| gdc.oaire.keywords | Average magnitude difference function (AMDF) | |
| gdc.oaire.keywords | PIR sensor | |
| gdc.oaire.keywords | Wavelet transforms | |
| gdc.oaire.keywords | Vibration sensors | |
| gdc.oaire.keywords | Functions | |
| gdc.oaire.keywords | Empirical mode decomposition (EMD) | |
| gdc.oaire.keywords | Pickups | |
| gdc.oaire.keywords | Empirical Mode Decomposition | |
| gdc.oaire.keywords | Wavelet transform | |
| gdc.oaire.keywords | Average magnitude difference function | |
| gdc.oaire.keywords | Pir sensors | |
| gdc.oaire.keywords | Signal detection | |
| gdc.oaire.popularity | 5.515848E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 1.22144777 | |
| gdc.openalex.normalizedpercentile | 0.79 | |
| gdc.opencitations.count | 17 | |
| gdc.plumx.crossrefcites | 11 | |
| gdc.plumx.mendeley | 35 | |
| gdc.plumx.patentfamcites | 1 | |
| gdc.plumx.scopuscites | 18 | |
| gdc.scopus.citedcount | 18 | |
| gdc.virtual.author | Erden, Fatih | |
| gdc.wos.citedcount | 16 | |
| relation.isAuthorOfPublication | c4a31dd8-3300-4336-8123-72991857fd0d | |
| relation.isAuthorOfPublication.latestForDiscovery | c4a31dd8-3300-4336-8123-72991857fd0d | |
| relation.isOrgUnitOfPublication | c3c9b34a-b165-4cd6-8959-dc25e91e206b | |
| relation.isOrgUnitOfPublication | dff2e5a6-d02d-4bef-8b9e-efebe3919b10 | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | c3c9b34a-b165-4cd6-8959-dc25e91e206b |
