Characterization of Bi<sub>2</sub>O<sub>3</sub>/ZnS heterojunctions designed for visible light communications

No Thumbnail Available

Date

2019

Authors

Qasrawı, Atef Fayez Hasan
Qasrawi, A. F.

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In the current work, the structural, morphological and optical properties of the Bi2O3/ZnS heterojunctions as visible light communication (VLC) technology element are explored. Bismuth oxide layers of thicknesses of 200 nm are used as substrate to evaporate ZnS films of thicknesses of 500 nm by the thermal evaporation technique under vacuum pressure of 10(-5) mbar. The heterojunction devices are studied by the x-ray diffraction, scanning electron microscopy, optical spectrophotometry and microwave spectroscopy techniques. The Bi2O3/ZnS heterojunctions are found to form a highly strained structure with extremely large lattice mismatches. By the strained structure and with the valence and conduction band offsets that exhibit values of 1.04 and 0.41 eV, respectively, it was possible to enhance the light absorbability of ZnS by 459 times at 3.10 eV. In addition, the dielectric constant spectra of the device display a linear and nonlinear optical properties below and above 1.94 eV, respectively. Moreover, the optical conductivity parameters including the drift mobility and plasmon frequency and the cutoff frequency spectra of an area of 0.50 cm(2) of Bi2O3/ZnS interfaces have shown the ability of using these heterojunction devices as light signal receivers that attenuate signals at terahertz frequencies in the range of 0.27-1.00 THz. As an additional demonstration, the Bi2O3/ZnS heterojunction devices were subjected to a microwave signal propagation in the frequency domain of 0.01-2.90 GHz. The device performed as band filters at gigahertz frequencies.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Bi2O3/ZnS, x-ray diffraction, band offsets, optical conduction, terahertz

Turkish CoHE Thesis Center URL

Fields of Science

Citation

3

WoS Q

Q3

Scopus Q

Source

Volume

6

Issue

3

Start Page

End Page

Collections