Characterization of Bi<sub>2</Sub>o<sub>3< Heterojunctions Designed for Visible Light Communications
No Thumbnail Available
Date
2019
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Iop Publishing Ltd
Open Access Color
GOLD
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
In the current work, the structural, morphological and optical properties of the Bi2O3/ZnS heterojunctions as visible light communication (VLC) technology element are explored. Bismuth oxide layers of thicknesses of 200 nm are used as substrate to evaporate ZnS films of thicknesses of 500 nm by the thermal evaporation technique under vacuum pressure of 10(-5) mbar. The heterojunction devices are studied by the x-ray diffraction, scanning electron microscopy, optical spectrophotometry and microwave spectroscopy techniques. The Bi2O3/ZnS heterojunctions are found to form a highly strained structure with extremely large lattice mismatches. By the strained structure and with the valence and conduction band offsets that exhibit values of 1.04 and 0.41 eV, respectively, it was possible to enhance the light absorbability of ZnS by 459 times at 3.10 eV. In addition, the dielectric constant spectra of the device display a linear and nonlinear optical properties below and above 1.94 eV, respectively. Moreover, the optical conductivity parameters including the drift mobility and plasmon frequency and the cutoff frequency spectra of an area of 0.50 cm(2) of Bi2O3/ZnS interfaces have shown the ability of using these heterojunction devices as light signal receivers that attenuate signals at terahertz frequencies in the range of 0.27-1.00 THz. As an additional demonstration, the Bi2O3/ZnS heterojunction devices were subjected to a microwave signal propagation in the frequency domain of 0.01-2.90 GHz. The device performed as band filters at gigahertz frequencies.
Description
Qasrawi, Atef Fayez/0000-0001-8193-6975
ORCID
Keywords
Bi2O3/ZnS, x-ray diffraction, band offsets, optical conduction, terahertz
Turkish CoHE Thesis Center URL
Fields of Science
0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences
Citation
WoS Q
Q3
Scopus Q
Q3

OpenCitations Citation Count
4
Source
Materials Research Express
Volume
6
Issue
3
Start Page
036205
End Page
PlumX Metrics
Citations
CrossRef : 1
Scopus : 4
Captures
Mendeley Readers : 5
Google Scholar™

OpenAlex FWCI
0.24550474
Sustainable Development Goals
1
NO POVERTY

3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


