Student Engagement Research Trends of Past 10 Years: a Machine Learning-Based Analysis of 42,000 Research Articles

dc.authoridGURCAN, Fatih/0000-0001-9915-6686
dc.authorscopusid57194776706
dc.authorscopusid57193006636
dc.authorscopusid16237826800
dc.authorscopusid16237824500
dc.authorwosidGURCAN, Fatih/AAJ-7503-2021
dc.contributor.authorGurcan, Fatih
dc.contributor.authorÇağıltay, Nergiz
dc.contributor.authorErdogdu, Fatih
dc.contributor.authorCagiltay, Nergiz Ercil
dc.contributor.authorCagiltay, Kursat
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:25:26Z
dc.date.available2024-07-05T15:25:26Z
dc.date.issued2023
dc.departmentAtılım Universityen_US
dc.department-temp[Gurcan, Fatih] Karadeniz Tech Univ, Fac Econ & Adm Sci, Dept Management Informat Syst, Trabzon, Turkiye; [Erdogdu, Fatih] Zonguldak Bulent Ecevit Univ, Dept Comp Technol, Zonguldak, Turkiye; [Cagiltay, Nergiz Ercil] Atilim Univ, Software Engn Dept, Ankara, Turkiye; [Cagiltay, Kursat] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkiyeen_US
dc.descriptionGURCAN, Fatih/0000-0001-9915-6686en_US
dc.description.abstractStudent engagement is critical for both academic achievement and learner satisfaction because it promotes successful learning outcomes. Despite its importance in various learning environments, research into the trends and themes of student engagement is scarce. In this regard, topic modeling, a machine learning technique, allows for the analysis of large amounts of content in any field. Thus, topic modeling provides a systematic methodology for identifying research themes, trends, and application areas in a comprehensive framework. In the literature, there is a lack of topic modeling-based studies that analyze the holistic landscape of student engagement research. Such research is important for identifying wide-ranging topics and trends in the field and guiding researchers and educators. Therefore, this study aimed to analyze student engagement research using a topic modeling approach and to reveal research interests and trends with their temporal development, thereby addressing a lack of research in this area. To this end, this study analyzed 42,517 peer-reviewed journal articles published from 2010 to 2019 using machine learning techniques. According to our findings, two new dimensions, "Community Engagement" and "School Engagement", were identified in addition to the existing ones. It is also envisaged that the next period of research and applications in student engagement will focus on the motivation-oriented tools and methods, dimensions of student engagement, such as social and behavioral engagement, and specific learning contexts such as English as a Foreign Language "EFL" and Science, Technology, Engineering and Math "STEM".en_US
dc.identifier.citation2
dc.identifier.doi10.1007/s10639-023-11803-8
dc.identifier.endpage15091en_US
dc.identifier.issn1360-2357
dc.identifier.issn1573-7608
dc.identifier.issue11en_US
dc.identifier.scopus2-s2.0-85153395466
dc.identifier.scopusqualityQ1
dc.identifier.startpage15067en_US
dc.identifier.urihttps://doi.org/10.1007/s10639-023-11803-8
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2542
dc.identifier.volume28en_US
dc.identifier.wosWOS:000975863900001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectStudent engagementen_US
dc.subjectTopic modelingen_US
dc.subjectText miningen_US
dc.subjectTrend analysisen_US
dc.subjectMachine learningen_US
dc.titleStudent Engagement Research Trends of Past 10 Years: a Machine Learning-Based Analysis of 42,000 Research Articlesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationc99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isAuthorOfPublication.latestForDiscoveryc99221fa-e0c9-4b73-9f64-54919fcd3c58
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections