Optoelektronik malzemelerin analizi

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Optoelektronik, ışığın yayılımı ve algılanması LED'lerin, güneş pillerinin, transistörlerin, ve fotodetektörlerin yapısı ve üretimi ile ilgili olan bir anabilim dalıdr. Cihazların sentezlenmesinde kullanılan malzemeler, (Silikon, MWCNT, SWCNT ve Grafen) radyasyon ışığını elektriğe veya tersine dönüştürme kapasitesine göre değişim göstermektedir. Bu tez, optoelektronik sistemlerde özellikle karbondan (grafit, fulleren, CNT, MWCNT, SWCNT ve Grafen) üretilen malzemelerin kökenini temsil eden grafen materyalinde bulunan karbon nanotüp malzemelerin analizini incelemekte ve MWCNT'lerin istisnai özelliklerini vurgulamaktadır. MWCNT numunesi üzerindeki deneyler, güç lazeri (200mW, 100mW, 50mW) ve dalga boyu 532nm olan Raman spektrometresi kullanılarak gerçekleştirilmiştir.
Optoelectronic is a section of electronics which deals with emitting and detecting of light such as LEDs, solar cells, transistors, photodetectors. These devices synthesis of materials (Silicon, MWCNTs, SWCNTs and Graphene) has a possibility to convert the incident radiation light in to electric power or vice versa. This thesis reviews the analysis of optoelectronic materials in particular for graphene material which represents the latest episode of the explorations of the origin of materials from carbon (graphite, fullerene, CNT, MWCNTs, SWCNTs and Graphene) and highlight the exceptional properties of MWCNTs and graphene by using Raman theory. An implementation, including experiment in a laboratory on MWCNTs sample by using Raman system which inclueds spectrometer with power laser (200mW, 100mW, 50mW) and wavelength 532nm.

Description

Keywords

Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

63