On the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> &gt; 1

dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T14:29:13Z
dc.date.available 2024-07-05T14:29:13Z
dc.date.issued 2016
dc.description.abstract The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciences en_US
dc.identifier.doi 10.1515/ms-2015-0116
dc.identifier.issn 0139-9918
dc.identifier.issn 1337-2211
dc.identifier.scopus 2-s2.0-84969706134
dc.identifier.uri https://doi.org/10.1515/ms-2015-0116
dc.identifier.uri https://hdl.handle.net/20.500.14411/484
dc.language.iso en en_US
dc.publisher Walter de Gruyter Gmbh en_US
dc.relation.ispartof Mathematica Slovaca
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-integers en_US
dc.subject q-binomial coefficients en_US
dc.subject q-Bernstein polynomials en_US
dc.subject convergence en_US
dc.title On the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 78 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 73 en_US
gdc.description.volume 66 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2346670179
gdc.identifier.wos WOS:000375745500007
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9710976E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 9.445741E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 1.041
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 3
gdc.plumx.crossrefcites 3
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.wos.citedcount 2
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections