On the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> &gt; 1

dc.authorscopusid35610828900
dc.authorwosidOstrovska, Sofiya/AAA-2156-2020
dc.contributor.authorOstrovska, Sofiya
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T14:29:13Z
dc.date.available2024-07-05T14:29:13Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.description.abstractThe q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciencesen_US
dc.identifier.citationcount2
dc.identifier.doi10.1515/ms-2015-0116
dc.identifier.endpage78en_US
dc.identifier.issn0139-9918
dc.identifier.issn1337-2211
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84969706134
dc.identifier.startpage73en_US
dc.identifier.urihttps://doi.org/10.1515/ms-2015-0116
dc.identifier.urihttps://hdl.handle.net/20.500.14411/484
dc.identifier.volume66en_US
dc.identifier.wosWOS:000375745500007
dc.identifier.wosqualityQ1
dc.institutionauthorOstrovska, Sofiya
dc.language.isoenen_US
dc.publisherWalter de Gruyter Gmbhen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.scopus.citedbyCount2
dc.subjectq-integersen_US
dc.subjectq-binomial coefficientsen_US
dc.subjectq-Bernstein polynomialsen_US
dc.subjectconvergenceen_US
dc.titleOn the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> &gt; 1en_US
dc.typeArticleen_US
dc.wos.citedbyCount2
dspace.entity.typePublication
relation.isAuthorOfPublicationaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscoveryaf5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections