On the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> > 1
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:29:13Z | |
| dc.date.available | 2024-07-05T14:29:13Z | |
| dc.date.issued | 2016 | |
| dc.description.abstract | The q-Bernstein basis used to construct the q-Bernstein polynomials is an extension of the Bernstein basis related to the q-binomial probability distribution. This distribution plays a profound role in the q-boson operator calculus. In the case q > 1, q-Bernstein basic polynomials on [0, 1] combine the fast increase in magnitude with sign oscillations. This seriously complicates the study of q-Bernstein polynomials in the case of q > 1. The aim of this paper is to present new results related to the q-Bernstein polynomials B-n,B- q of discontinuous functions in the case q > 1. The behavior of polynomials B-n,B- q(f; x) for functions f possessing a logarithmic singularity at 0 has been examined. (C) 2016 Mathematical Institute Slovak Academy of Sciences | en_US |
| dc.identifier.doi | 10.1515/ms-2015-0116 | |
| dc.identifier.issn | 0139-9918 | |
| dc.identifier.issn | 1337-2211 | |
| dc.identifier.scopus | 2-s2.0-84969706134 | |
| dc.identifier.uri | https://doi.org/10.1515/ms-2015-0116 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/484 | |
| dc.language.iso | en | en_US |
| dc.publisher | Walter de Gruyter Gmbh | en_US |
| dc.relation.ispartof | Mathematica Slovaca | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-integers | en_US |
| dc.subject | q-binomial coefficients | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | convergence | en_US |
| dc.title | On the <i>q</I>-bernstein Polynomials of the Logarithmic Function in the Case <i>q</I> > 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 78 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 73 | en_US |
| gdc.description.volume | 66 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2346670179 | |
| gdc.identifier.wos | WOS:000375745500007 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.9710976E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 9.445741E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 1.041 | |
| gdc.openalex.normalizedpercentile | 0.48 | |
| gdc.opencitations.count | 3 | |
| gdc.plumx.crossrefcites | 3 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |