Existence of a Solution of Integral Equations Via Fixed Point Theorem

dc.authorid Gulyaz, Selma/0000-0002-1876-6560
dc.authorid KARAPINAR, ERDAL/0000-0002-6798-3254
dc.authorscopusid 15837090700
dc.authorscopusid 16678995500
dc.authorscopusid 6701485245
dc.authorscopusid 55469385500
dc.authorwosid RAKOČEVIĆ, VLADIMIR/AAE-3781-2020
dc.authorwosid Salimi, Peyman/J-9674-2014
dc.authorwosid Gulyaz, Selma/AAN-9525-2021
dc.authorwosid KARAPINAR, ERDAL/H-3177-2011
dc.contributor.author Gulyaz, Selma
dc.contributor.author Karapinar, Erdal
dc.contributor.author Rakocevic, Vladimir
dc.contributor.author Salimi, Peyman
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T14:28:29Z
dc.date.available 2024-07-05T14:28:29Z
dc.date.issued 2013
dc.department Atılım University en_US
dc.department-temp [Gulyaz, Selma] Cumhuriyet Univ, Dept Math, Sivas, Turkey; [Karapinar, Erdal] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Rakocevic, Vladimir] Univ Nis, Fac Sci & Math, Nish 18000, Serbia; [Salimi, Peyman] Islamic Azad Univ, Young Researchers & Elite Club, Rasht, Iran en_US
dc.description Gulyaz, Selma/0000-0002-1876-6560; KARAPINAR, ERDAL/0000-0002-6798-3254 en_US
dc.description.abstract In this paper, we establish a solution to the following integral equation: u(t) = integral(T)(0) G(t, s)f(s, u(s)) ds for all t is an element of [0,T], (1) where T > 0, f : [0, T] x R -> R and G : [0, T] x [0, T] -> [0, infinity) are continuous functions. For this purpose, we also obtain some auxiliary fixed point results which generalize, improve and unify some fixed point theorems in the literature. en_US
dc.description.sponsorship Ministry of Science, Technology and Development, Republic of Serbia [174025] en_US
dc.description.sponsorship The authors thank the anonymous referees for their remarkable comments, suggestions and ideas that helped to improve this paper. The third author (V Rakocevic) is supported by Grant No. 174025 of the Ministry of Science, Technology and Development, Republic of Serbia. en_US
dc.identifier.citationcount 4
dc.identifier.doi 10.1186/1029-242X-2013-529
dc.identifier.issn 1029-242X
dc.identifier.scopus 2-s2.0-84897633760
dc.identifier.uri https://doi.org/10.1186/1029-242X-2013-529
dc.identifier.uri https://hdl.handle.net/20.500.14411/397
dc.identifier.wos WOS:000327463000006
dc.identifier.wosquality Q1
dc.institutionauthor Karapınar, Erdal
dc.language.iso en en_US
dc.publisher Springeropen en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 14
dc.subject cyclic representation en_US
dc.subject fixed point en_US
dc.title Existence of a Solution of Integral Equations Via Fixed Point Theorem en_US
dc.type Article en_US
dc.wos.citedbyCount 5
dspace.entity.type Publication
relation.isAuthorOfPublication 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isAuthorOfPublication.latestForDiscovery 69e25f84-afec-4c79-a19a-1e7811d90143
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections