Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices

dc.authorid Kara, Ali/0000-0002-9739-7619
dc.authorscopusid 57211496508
dc.authorscopusid 57195218811
dc.authorscopusid 7102824862
dc.contributor.author Aghnaiya, Alghannai
dc.contributor.author Ali, Aysha M.
dc.contributor.author Kara, Ali
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:28:18Z
dc.date.available 2024-07-05T15:28:18Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Aghnaiya, Alghannai; Kara, Ali] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey; [Ali, Aysha M.] Omer Al Mukhtar Univ, Dept Elect & Elect Engn, Al Bayda 543, Libya en_US
dc.description Kara, Ali/0000-0002-9739-7619 en_US
dc.description.abstract Radio frequency fingerprinting (RFF) is based on identification of unique features of RF transient signals emitted by radio devices. RF transient signals of radio devices are short in duration, non-stationary and nonlinear time series. This paper evaluates the performance of RF fingerprinting method based on variational mode decomposition (VMD). For this purpose, VMD is used to decompose Bluetooth (BT) transient signals into a series of band-limited modes, and then, the transient signal is reconstructed from the modes. Higher order statistical (HOS) features are extracted from the complex form of reconstructed transients. Then, Linear Support Vector Machine (LVM) classifier is used to identify BT devices. The method has been tested experimentally with BT devices of different brands, models and series. The classification performance shows that VMD based RF fingerprinting method achieves better performance (at least 8% higher) than time-frequency-energy (TFED) distribution based methods such as Hilbert-Huang Transform. This is demonstrated with the same dataset but with smaller number of features (nine features) and slightly lower (2-3 dB) SNR levels. en_US
dc.identifier.citationcount 22
dc.identifier.doi 10.1109/ACCESS.2019.2945121
dc.identifier.endpage 144058 en_US
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-85074185504
dc.identifier.scopusquality Q1
dc.identifier.startpage 144054 en_US
dc.identifier.uri https://doi.org/10.1109/ACCESS.2019.2945121
dc.identifier.uri https://hdl.handle.net/20.500.14411/2769
dc.identifier.volume 7 en_US
dc.identifier.wos WOS:000560228000088
dc.identifier.wosquality Q2
dc.institutionauthor Kara, Ali
dc.language.iso en en_US
dc.publisher Ieee-inst Electrical Electronics Engineers inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 38
dc.subject Variational mode decomposition en_US
dc.subject Bluetooth signals en_US
dc.subject specific emitter identification en_US
dc.subject feature extraction en_US
dc.subject signal classification en_US
dc.title Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices en_US
dc.type Article en_US
dc.wos.citedbyCount 28
dspace.entity.type Publication
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery be728837-c599-49c1-8e8d-81b90219bb15
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery c3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections