Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices

dc.authoridKara, Ali/0000-0002-9739-7619
dc.authorscopusid57211496508
dc.authorscopusid57195218811
dc.authorscopusid7102824862
dc.contributor.authorAghnaiya, Alghannai
dc.contributor.authorAli, Aysha M.
dc.contributor.authorKara, Ali
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:28:18Z
dc.date.available2024-07-05T15:28:18Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Aghnaiya, Alghannai; Kara, Ali] Atilim Univ, Dept Elect & Elect Engn, TR-06830 Ankara, Turkey; [Ali, Aysha M.] Omer Al Mukhtar Univ, Dept Elect & Elect Engn, Al Bayda 543, Libyaen_US
dc.descriptionKara, Ali/0000-0002-9739-7619en_US
dc.description.abstractRadio frequency fingerprinting (RFF) is based on identification of unique features of RF transient signals emitted by radio devices. RF transient signals of radio devices are short in duration, non-stationary and nonlinear time series. This paper evaluates the performance of RF fingerprinting method based on variational mode decomposition (VMD). For this purpose, VMD is used to decompose Bluetooth (BT) transient signals into a series of band-limited modes, and then, the transient signal is reconstructed from the modes. Higher order statistical (HOS) features are extracted from the complex form of reconstructed transients. Then, Linear Support Vector Machine (LVM) classifier is used to identify BT devices. The method has been tested experimentally with BT devices of different brands, models and series. The classification performance shows that VMD based RF fingerprinting method achieves better performance (at least 8% higher) than time-frequency-energy (TFED) distribution based methods such as Hilbert-Huang Transform. This is demonstrated with the same dataset but with smaller number of features (nine features) and slightly lower (2-3 dB) SNR levels.en_US
dc.identifier.citationcount22
dc.identifier.doi10.1109/ACCESS.2019.2945121
dc.identifier.endpage144058en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85074185504
dc.identifier.scopusqualityQ1
dc.identifier.startpage144054en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2019.2945121
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2769
dc.identifier.volume7en_US
dc.identifier.wosWOS:000560228000088
dc.identifier.wosqualityQ2
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherIeee-inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount37
dc.subjectVariational mode decompositionen_US
dc.subjectBluetooth signalsen_US
dc.subjectspecific emitter identificationen_US
dc.subjectfeature extractionen_US
dc.subjectsignal classificationen_US
dc.titleVariational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devicesen_US
dc.typeArticleen_US
dc.wos.citedbyCount27
dspace.entity.typePublication
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscoverybe728837-c599-49c1-8e8d-81b90219bb15
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections