The approximation of logarithmic function by <i>q</i>-Bernstein polynomials in the case <i>q</i> > 1
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T14:33:28Z | |
dc.date.available | 2024-07-05T14:33:28Z | |
dc.date.issued | 2007 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | Since in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[ 0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[ 0, 1] uniformly approximated by their q-Bernstein polynomials ( q > 1) remains open. It is known that the approximation occurs for functions admitting an analytic continuation into a disc {z : | z| < R}, R > 1. For functions without such an assumption, no general results on approximation are available. In this paper, it is shown that the function f ( x) = ln( x + a), a > 0, is uniformly approximated by its q-Bernstein polynomials ( q > 1) on the interval [ 0, 1] if and only if a >= 1. | en_US |
dc.identifier.citation | 9 | |
dc.identifier.doi | 10.1007/s11075-007-9081-7 | |
dc.identifier.endpage | 82 | en_US |
dc.identifier.issn | 1017-1398 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-34248364864 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 69 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11075-007-9081-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/936 | |
dc.identifier.volume | 44 | en_US |
dc.identifier.wos | WOS:000246359200005 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-integers | en_US |
dc.subject | q-binomial coefficients | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | uniform convergence | en_US |
dc.title | The approximation of logarithmic function by <i>q</i>-Bernstein polynomials in the case <i>q</i> > 1 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |