A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs

dc.authorid Yazici, Ali/0000-0001-5405-802X
dc.authorscopusid 7004369411
dc.authorscopusid 6602782136
dc.authorscopusid 7003694907
dc.authorscopusid 6508052706
dc.authorscopusid 6603410819
dc.authorscopusid 8514029100
dc.authorwosid KARAER, FEZA/AAH-3984-2021
dc.authorwosid Soyupak, Selçuk/A-9965-2008
dc.authorwosid Yazici, Ali/Q-5115-2019
dc.contributor.author Soyupak, S
dc.contributor.author Karaer, F
dc.contributor.author Gürbüz, H
dc.contributor.author Kivrak, E
dc.contributor.author Sentürk, E
dc.contributor.author Yazici, A
dc.contributor.other Department of Modern Languages
dc.date.accessioned 2024-07-05T15:08:37Z
dc.date.available 2024-07-05T15:08:37Z
dc.date.issued 2003
dc.department Atılım University en_US
dc.department-temp Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Uludag Univ, Dept Environm Engn, TR-16059 Bursa, Turkey; Ataturk Univ, Dept Biol Educ, Erzurum, Turkey; State Hydraul Works Turkey, Div 1, TR-16372 Bursa, Turkey; Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey en_US
dc.description Yazici, Ali/0000-0001-5405-802X en_US
dc.description.abstract A Neural Network (NN) modelling approach has been shown to be successful in calculating pseudo steady state time and space dependent Dissolved Oxygen (DO) concentrations in three separate reservoirs with different characteristics using limited number of input variables. The Levenberg-Marquardt algorithm was adopted during training. Pre-processing before training and post processing after simulation steps were the treatments applied to raw data and predictions respectively. Generalisation was improved and over-fitting problems were eliminated: Early stopping method was applied for improving generalisation. The correlation coefficients between neural network estimates and field measurements were as high as 0.98 for two of the reservoirs with experiments that involve double layer neural network structure with 30 neurons within each hidden layer. A simple one layer neural network structure with 11 neurons has yielded comparable and satisfactorily high correlation coefficients for complete data set, and training, validation and test sets of the third reservoir. en_US
dc.identifier.citationcount 45
dc.identifier.doi 10.1007/s00521-003-0378-8
dc.identifier.endpage 172 en_US
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.issue 3-4 en_US
dc.identifier.scopus 2-s2.0-0346972461
dc.identifier.startpage 166 en_US
dc.identifier.uri https://doi.org/10.1007/s00521-003-0378-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/1067
dc.identifier.volume 12 en_US
dc.identifier.wos WOS:000187658900006
dc.identifier.wosquality Q2
dc.institutionauthor Şentürk, Emine
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 49
dc.subject dissolved oxygen en_US
dc.subject generalisation en_US
dc.subject Levenberg-Marquardt algorithm en_US
dc.subject neural networks en_US
dc.subject reservoirs en_US
dc.subject water quality modelling en_US
dc.title A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs en_US
dc.type Article en_US
dc.wos.citedbyCount 44
dspace.entity.type Publication
relation.isAuthorOfPublication 74a197c1-3b9e-42ea-b024-0ab89c38e2cf
relation.isAuthorOfPublication.latestForDiscovery 74a197c1-3b9e-42ea-b024-0ab89c38e2cf
relation.isOrgUnitOfPublication 31554256-c410-403f-9195-717f892be9f7
relation.isOrgUnitOfPublication.latestForDiscovery 31554256-c410-403f-9195-717f892be9f7

Files

Collections