A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs
dc.authorid | Yazici, Ali/0000-0001-5405-802X | |
dc.authorscopusid | 7004369411 | |
dc.authorscopusid | 6602782136 | |
dc.authorscopusid | 7003694907 | |
dc.authorscopusid | 6508052706 | |
dc.authorscopusid | 6603410819 | |
dc.authorscopusid | 8514029100 | |
dc.authorwosid | KARAER, FEZA/AAH-3984-2021 | |
dc.authorwosid | Soyupak, Selçuk/A-9965-2008 | |
dc.authorwosid | Yazici, Ali/Q-5115-2019 | |
dc.contributor.author | Soyupak, S | |
dc.contributor.author | Karaer, F | |
dc.contributor.author | Gürbüz, H | |
dc.contributor.author | Kivrak, E | |
dc.contributor.author | Sentürk, E | |
dc.contributor.author | Yazici, A | |
dc.contributor.other | Department of Modern Languages | |
dc.date.accessioned | 2024-07-05T15:08:37Z | |
dc.date.available | 2024-07-05T15:08:37Z | |
dc.date.issued | 2003 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Uludag Univ, Dept Environm Engn, TR-16059 Bursa, Turkey; Ataturk Univ, Dept Biol Educ, Erzurum, Turkey; State Hydraul Works Turkey, Div 1, TR-16372 Bursa, Turkey; Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey | en_US |
dc.description | Yazici, Ali/0000-0001-5405-802X | en_US |
dc.description.abstract | A Neural Network (NN) modelling approach has been shown to be successful in calculating pseudo steady state time and space dependent Dissolved Oxygen (DO) concentrations in three separate reservoirs with different characteristics using limited number of input variables. The Levenberg-Marquardt algorithm was adopted during training. Pre-processing before training and post processing after simulation steps were the treatments applied to raw data and predictions respectively. Generalisation was improved and over-fitting problems were eliminated: Early stopping method was applied for improving generalisation. The correlation coefficients between neural network estimates and field measurements were as high as 0.98 for two of the reservoirs with experiments that involve double layer neural network structure with 30 neurons within each hidden layer. A simple one layer neural network structure with 11 neurons has yielded comparable and satisfactorily high correlation coefficients for complete data set, and training, validation and test sets of the third reservoir. | en_US |
dc.identifier.citationcount | 45 | |
dc.identifier.doi | 10.1007/s00521-003-0378-8 | |
dc.identifier.endpage | 172 | en_US |
dc.identifier.issn | 0941-0643 | |
dc.identifier.issn | 1433-3058 | |
dc.identifier.issue | 3-4 | en_US |
dc.identifier.scopus | 2-s2.0-0346972461 | |
dc.identifier.startpage | 166 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00521-003-0378-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1067 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000187658900006 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Şentürk, Emine | |
dc.language.iso | en | en_US |
dc.publisher | Springer London Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 49 | |
dc.subject | dissolved oxygen | en_US |
dc.subject | generalisation | en_US |
dc.subject | Levenberg-Marquardt algorithm | en_US |
dc.subject | neural networks | en_US |
dc.subject | reservoirs | en_US |
dc.subject | water quality modelling | en_US |
dc.title | A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 44 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 74a197c1-3b9e-42ea-b024-0ab89c38e2cf | |
relation.isAuthorOfPublication.latestForDiscovery | 74a197c1-3b9e-42ea-b024-0ab89c38e2cf | |
relation.isOrgUnitOfPublication | 31554256-c410-403f-9195-717f892be9f7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31554256-c410-403f-9195-717f892be9f7 |