A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs

dc.contributor.author Soyupak, S
dc.contributor.author Karaer, F
dc.contributor.author Gürbüz, H
dc.contributor.author Kivrak, E
dc.contributor.author Sentürk, E
dc.contributor.author Yazici, A
dc.contributor.other Department of Modern Languages
dc.contributor.other 14. School of Foreign Languages
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:08:37Z
dc.date.available 2024-07-05T15:08:37Z
dc.date.issued 2003
dc.description Yazici, Ali/0000-0001-5405-802X en_US
dc.description.abstract A Neural Network (NN) modelling approach has been shown to be successful in calculating pseudo steady state time and space dependent Dissolved Oxygen (DO) concentrations in three separate reservoirs with different characteristics using limited number of input variables. The Levenberg-Marquardt algorithm was adopted during training. Pre-processing before training and post processing after simulation steps were the treatments applied to raw data and predictions respectively. Generalisation was improved and over-fitting problems were eliminated: Early stopping method was applied for improving generalisation. The correlation coefficients between neural network estimates and field measurements were as high as 0.98 for two of the reservoirs with experiments that involve double layer neural network structure with 30 neurons within each hidden layer. A simple one layer neural network structure with 11 neurons has yielded comparable and satisfactorily high correlation coefficients for complete data set, and training, validation and test sets of the third reservoir. en_US
dc.identifier.doi 10.1007/s00521-003-0378-8
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-0346972461
dc.identifier.uri https://doi.org/10.1007/s00521-003-0378-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/1067
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject dissolved oxygen en_US
dc.subject generalisation en_US
dc.subject Levenberg-Marquardt algorithm en_US
dc.subject neural networks en_US
dc.subject reservoirs en_US
dc.subject water quality modelling en_US
dc.title A Neural Network-Based Approach for Calculating Dissolved Oxygen Profiles in Reservoirs en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Yazici, Ali/0000-0001-5405-802X
gdc.author.institutional Şentürk, Emine
gdc.author.scopusid 7004369411
gdc.author.scopusid 6602782136
gdc.author.scopusid 7003694907
gdc.author.scopusid 6508052706
gdc.author.scopusid 6603410819
gdc.author.scopusid 8514029100
gdc.author.wosid KARAER, FEZA/AAH-3984-2021
gdc.author.wosid Soyupak, Selçuk/A-9965-2008
gdc.author.wosid Yazici, Ali/Q-5115-2019
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Civil Engn, TR-06836 Ankara, Turkey; Uludag Univ, Dept Environm Engn, TR-16059 Bursa, Turkey; Ataturk Univ, Dept Biol Educ, Erzurum, Turkey; State Hydraul Works Turkey, Div 1, TR-16372 Bursa, Turkey; Atilim Univ, Dept Comp Engn, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 172 en_US
gdc.description.issue 3-4 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 166 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W1967299434
gdc.identifier.wos WOS:000187658900006
gdc.openalex.fwci 0.418
gdc.openalex.normalizedpercentile 0.94
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 40
gdc.plumx.crossrefcites 26
gdc.plumx.mendeley 19
gdc.plumx.scopuscites 49
gdc.scopus.citedcount 49
gdc.wos.citedcount 44
relation.isAuthorOfPublication 74a197c1-3b9e-42ea-b024-0ab89c38e2cf
relation.isAuthorOfPublication.latestForDiscovery 74a197c1-3b9e-42ea-b024-0ab89c38e2cf
relation.isOrgUnitOfPublication 31554256-c410-403f-9195-717f892be9f7
relation.isOrgUnitOfPublication 9987a3df-9c3a-45d6-b691-d7adc013f5a2
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31554256-c410-403f-9195-717f892be9f7

Files

Collections