Global Robust Stability of Interval Delayed Neural Networks: Modified Approach
dc.authorscopusid | 7404651584 | |
dc.contributor.author | Singh, Vimal | |
dc.contributor.other | Department of Mechatronics Engineering | |
dc.date.accessioned | 2024-07-05T15:12:01Z | |
dc.date.available | 2024-07-05T15:12:01Z | |
dc.date.issued | 2009 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Elect Elect Engn, TR-06836 Ankara, Turkey | en_US |
dc.description.abstract | A criterion for the global robust stability of Hopfield-type delayed neural networks with the intervalized network parameters is presented. The criterion, which is derived by utilizing the idea of splitting the given interval into two intervals, is in the form of linear matrix inequality and, hence, computationally tractable. The criterion yields a less conservative condition compared with many recently reported criteria, as is demonstrated with an example. Copyright (C) 2008 John Wiley & Sons, Ltd. | en_US |
dc.identifier.citationcount | 3 | |
dc.identifier.doi | 10.1002/cta.523 | |
dc.identifier.endpage | 1007 | en_US |
dc.identifier.issn | 0098-9886 | |
dc.identifier.issn | 1097-007X | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-70350506294 | |
dc.identifier.startpage | 995 | en_US |
dc.identifier.uri | https://doi.org/10.1002/cta.523 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1527 | |
dc.identifier.volume | 37 | en_US |
dc.identifier.wos | WOS:000271558900005 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Sıngh, Vımal | |
dc.language.iso | en | en_US |
dc.publisher | Wiley | en_US |
dc.relation.publicationcategory | Diğer | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 3 | |
dc.subject | dynamical interval neural networks | en_US |
dc.subject | equilibrium analysis | en_US |
dc.subject | global robust stability | en_US |
dc.subject | Hopfield neural networks | en_US |
dc.subject | neural networks | en_US |
dc.title | Global Robust Stability of Interval Delayed Neural Networks: Modified Approach | en_US |
dc.type | Letter | en_US |
dc.wos.citedbyCount | 3 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e3234b4c-8993-4550-93fe-38796ff7c7e1 | |
relation.isAuthorOfPublication.latestForDiscovery | e3234b4c-8993-4550-93fe-38796ff7c7e1 | |
relation.isOrgUnitOfPublication | e2a6d0b1-378e-4532-82b1-d17cabc56744 | |
relation.isOrgUnitOfPublication.latestForDiscovery | e2a6d0b1-378e-4532-82b1-d17cabc56744 |