Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures

dc.contributor.author Golinskii, L
dc.contributor.author Khrushchev, S
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:08:52Z
dc.date.available 2024-07-05T15:08:52Z
dc.date.issued 2002
dc.description Khrushchev, Sergey/0000-0002-8854-5317; Golinskii, Leonid/0000-0002-7677-1210 en_US
dc.description.abstract The convergence in L-2(T) of the even approximants of the Wall continued fractions is extended to the Cesaro-Nevai class CN, which is defined as the class of probability measures sigma with lim(n-->infinity) 1/n Sigma(k=0)(n-1) \a(k)\ = 0, (a(n))(ngreater than or equal to0) being the Geronimus parameters of sigma. We show that CN contains universal measures, that is, probability measures for which the sequence (\phi(n)\(2) dsigma)(ngreater than or equal to0) is dense in the set of all probability measures equipped with the weak-* topology. We also consider the "opposite" Szego class which consists of measures with Sigma(n=0)(infinity) (1-\a(n)\(2))(1/2) < infinity and describe it in terms of Hessenberg matrices. (C) 2002 Elsevier Science (USA). en_US
dc.identifier.doi 10.1006/jath.2001.3655
dc.identifier.issn 0021-9045
dc.identifier.scopus 2-s2.0-0036272481
dc.identifier.uri https://doi.org/10.1006/jath.2001.3655
dc.identifier.uri https://hdl.handle.net/20.500.14411/1115
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.ispartof Journal of Approximation Theory
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject unit circle orthogonal polynomials en_US
dc.subject Schur functions en_US
dc.subject Schur parameters en_US
dc.subject strong summability en_US
dc.title Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Khrushchev, Sergey/0000-0002-8854-5317
gdc.author.id Golinskii, Leonid/0000-0002-7677-1210
gdc.author.institutional Khrushchev, Sergey
gdc.author.scopusid 56543434800
gdc.author.scopusid 7004133014
gdc.author.wosid Khrushchev, Sergey/AAH-8676-2019
gdc.author.wosid Golinskii, Leonid/AAF-2153-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 237 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 187 en_US
gdc.description.volume 115 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2062753932
gdc.identifier.wos WOS:000175919600001
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.5521999E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Mathematics(all)
gdc.oaire.keywords Numerical Analysis
gdc.oaire.keywords Schur function
gdc.oaire.keywords Applied Mathematics
gdc.oaire.keywords strong summability
gdc.oaire.keywords Cesàro summability
gdc.oaire.keywords Rakhmanov class
gdc.oaire.keywords Schur functions
gdc.oaire.keywords unit circle orthogonal polynomials
gdc.oaire.keywords reflection coefficients
gdc.oaire.keywords Convergence and divergence of continued fractions
gdc.oaire.keywords Nevai class
gdc.oaire.keywords Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
gdc.oaire.keywords orthogonal polynomials
gdc.oaire.keywords Schur parameters
gdc.oaire.keywords Szegő class
gdc.oaire.keywords Wall continued fraction
gdc.oaire.keywords Analysis
gdc.oaire.keywords Continued fractions; complex-analytic aspects
gdc.oaire.popularity 1.2941844E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 2.36
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 25
gdc.plumx.crossrefcites 7
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 7
relation.isAuthorOfPublication 96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isAuthorOfPublication.latestForDiscovery 96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections