Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures

dc.authorid Khrushchev, Sergey/0000-0002-8854-5317
dc.authorid Golinskii, Leonid/0000-0002-7677-1210
dc.authorscopusid 56543434800
dc.authorscopusid 7004133014
dc.authorwosid Khrushchev, Sergey/AAH-8676-2019
dc.authorwosid Golinskii, Leonid/AAF-2153-2020
dc.contributor.author Golinskii, L
dc.contributor.author Khrushchev, S
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:08:52Z
dc.date.available 2024-07-05T15:08:52Z
dc.date.issued 2002
dc.department Atılım University en_US
dc.department-temp B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
dc.description Khrushchev, Sergey/0000-0002-8854-5317; Golinskii, Leonid/0000-0002-7677-1210 en_US
dc.description.abstract The convergence in L-2(T) of the even approximants of the Wall continued fractions is extended to the Cesaro-Nevai class CN, which is defined as the class of probability measures sigma with lim(n-->infinity) 1/n Sigma(k=0)(n-1) \a(k)\ = 0, (a(n))(ngreater than or equal to0) being the Geronimus parameters of sigma. We show that CN contains universal measures, that is, probability measures for which the sequence (\phi(n)\(2) dsigma)(ngreater than or equal to0) is dense in the set of all probability measures equipped with the weak-* topology. We also consider the "opposite" Szego class which consists of measures with Sigma(n=0)(infinity) (1-\a(n)\(2))(1/2) < infinity and describe it in terms of Hessenberg matrices. (C) 2002 Elsevier Science (USA). en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1006/jath.2001.3655
dc.identifier.endpage 237 en_US
dc.identifier.issn 0021-9045
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-0036272481
dc.identifier.startpage 187 en_US
dc.identifier.uri https://doi.org/10.1006/jath.2001.3655
dc.identifier.uri https://hdl.handle.net/20.500.14411/1115
dc.identifier.volume 115 en_US
dc.identifier.wos WOS:000175919600001
dc.identifier.wosquality Q2
dc.institutionauthor Khrushchev, Sergey
dc.language.iso en en_US
dc.publisher Academic Press inc Elsevier Science en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.subject unit circle orthogonal polynomials en_US
dc.subject Schur functions en_US
dc.subject Schur parameters en_US
dc.subject strong summability en_US
dc.title Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures en_US
dc.type Article en_US
dc.wos.citedbyCount 7
dspace.entity.type Publication
relation.isAuthorOfPublication 96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isAuthorOfPublication.latestForDiscovery 96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections