Cesaro asymptotics for orthogonal polynomials on the unit circle and classes of measures

dc.authoridKhrushchev, Sergey/0000-0002-8854-5317
dc.authoridGolinskii, Leonid/0000-0002-7677-1210
dc.authorscopusid56543434800
dc.authorscopusid7004133014
dc.authorwosidKhrushchev, Sergey/AAH-8676-2019
dc.authorwosidGolinskii, Leonid/AAF-2153-2020
dc.contributor.authorGolinskii, L
dc.contributor.authorKhrushchev, S
dc.contributor.otherMathematics
dc.date.accessioned2024-07-05T15:08:52Z
dc.date.available2024-07-05T15:08:52Z
dc.date.issued2002
dc.departmentAtılım Universityen_US
dc.department-tempB Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine; Atilim Univ, Dept Math, TR-06836 Ankara, Turkeyen_US
dc.descriptionKhrushchev, Sergey/0000-0002-8854-5317; Golinskii, Leonid/0000-0002-7677-1210en_US
dc.description.abstractThe convergence in L-2(T) of the even approximants of the Wall continued fractions is extended to the Cesaro-Nevai class CN, which is defined as the class of probability measures sigma with lim(n-->infinity) 1/n Sigma(k=0)(n-1) \a(k)\ = 0, (a(n))(ngreater than or equal to0) being the Geronimus parameters of sigma. We show that CN contains universal measures, that is, probability measures for which the sequence (\phi(n)\(2) dsigma)(ngreater than or equal to0) is dense in the set of all probability measures equipped with the weak-* topology. We also consider the "opposite" Szego class which consists of measures with Sigma(n=0)(infinity) (1-\a(n)\(2))(1/2) < infinity and describe it in terms of Hessenberg matrices. (C) 2002 Elsevier Science (USA).en_US
dc.identifier.citation7
dc.identifier.doi10.1006/jath.2001.3655
dc.identifier.endpage237en_US
dc.identifier.issn0021-9045
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-0036272481
dc.identifier.startpage187en_US
dc.identifier.urihttps://doi.org/10.1006/jath.2001.3655
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1115
dc.identifier.volume115en_US
dc.identifier.wosWOS:000175919600001
dc.identifier.wosqualityQ2
dc.institutionauthorKhrushchev, Sergey
dc.language.isoenen_US
dc.publisherAcademic Press inc Elsevier Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectunit circle orthogonal polynomialsen_US
dc.subjectSchur functionsen_US
dc.subjectSchur parametersen_US
dc.subjectstrong summabilityen_US
dc.titleCesaro asymptotics for orthogonal polynomials on the unit circle and classes of measuresen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isAuthorOfPublication.latestForDiscovery96955c8f-cdd9-434b-80b5-0e40e6fa87f7
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files

Collections