Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures
| dc.contributor.author | Golinskii, L | |
| dc.contributor.author | Khrushchev, S | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T15:08:52Z | |
| dc.date.available | 2024-07-05T15:08:52Z | |
| dc.date.issued | 2002 | |
| dc.description | Khrushchev, Sergey/0000-0002-8854-5317; Golinskii, Leonid/0000-0002-7677-1210 | en_US |
| dc.description.abstract | The convergence in L-2(T) of the even approximants of the Wall continued fractions is extended to the Cesaro-Nevai class CN, which is defined as the class of probability measures sigma with lim(n-->infinity) 1/n Sigma(k=0)(n-1) \a(k)\ = 0, (a(n))(ngreater than or equal to0) being the Geronimus parameters of sigma. We show that CN contains universal measures, that is, probability measures for which the sequence (\phi(n)\(2) dsigma)(ngreater than or equal to0) is dense in the set of all probability measures equipped with the weak-* topology. We also consider the "opposite" Szego class which consists of measures with Sigma(n=0)(infinity) (1-\a(n)\(2))(1/2) < infinity and describe it in terms of Hessenberg matrices. (C) 2002 Elsevier Science (USA). | en_US |
| dc.identifier.doi | 10.1006/jath.2001.3655 | |
| dc.identifier.issn | 0021-9045 | |
| dc.identifier.scopus | 2-s2.0-0036272481 | |
| dc.identifier.uri | https://doi.org/10.1006/jath.2001.3655 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1115 | |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press inc Elsevier Science | en_US |
| dc.relation.ispartof | Journal of Approximation Theory | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | unit circle orthogonal polynomials | en_US |
| dc.subject | Schur functions | en_US |
| dc.subject | Schur parameters | en_US |
| dc.subject | strong summability | en_US |
| dc.title | Cesaro Asymptotics for Orthogonal Polynomials on the Unit Circle and Classes of Measures | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Khrushchev, Sergey/0000-0002-8854-5317 | |
| gdc.author.id | Golinskii, Leonid/0000-0002-7677-1210 | |
| gdc.author.institutional | Khrushchev, Sergey | |
| gdc.author.scopusid | 56543434800 | |
| gdc.author.scopusid | 7004133014 | |
| gdc.author.wosid | Khrushchev, Sergey/AAH-8676-2019 | |
| gdc.author.wosid | Golinskii, Leonid/AAF-2153-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | B Verkin Inst Low Temp Phys & Engn, Div Math, UA-61103 Kharkov, Ukraine; Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 237 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 187 | en_US |
| gdc.description.volume | 115 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2062753932 | |
| gdc.identifier.wos | WOS:000175919600001 | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.5521999E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Mathematics(all) | |
| gdc.oaire.keywords | Numerical Analysis | |
| gdc.oaire.keywords | Schur function | |
| gdc.oaire.keywords | Applied Mathematics | |
| gdc.oaire.keywords | strong summability | |
| gdc.oaire.keywords | Cesàro summability | |
| gdc.oaire.keywords | Rakhmanov class | |
| gdc.oaire.keywords | Schur functions | |
| gdc.oaire.keywords | unit circle orthogonal polynomials | |
| gdc.oaire.keywords | reflection coefficients | |
| gdc.oaire.keywords | Convergence and divergence of continued fractions | |
| gdc.oaire.keywords | Nevai class | |
| gdc.oaire.keywords | Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis | |
| gdc.oaire.keywords | orthogonal polynomials | |
| gdc.oaire.keywords | Schur parameters | |
| gdc.oaire.keywords | Szegő class | |
| gdc.oaire.keywords | Wall continued fraction | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.keywords | Continued fractions; complex-analytic aspects | |
| gdc.oaire.popularity | 1.2941844E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.fwci | 2.36 | |
| gdc.openalex.normalizedpercentile | 0.77 | |
| gdc.opencitations.count | 25 | |
| gdc.plumx.crossrefcites | 7 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 9 | |
| gdc.scopus.citedcount | 9 | |
| gdc.wos.citedcount | 7 | |
| relation.isAuthorOfPublication | 96955c8f-cdd9-434b-80b5-0e40e6fa87f7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 96955c8f-cdd9-434b-80b5-0e40e6fa87f7 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |