Automatic Classification of UML Class Diagrams Using Deep Learning Technique: Convolutional Neural Network

dc.contributor.author Gosala, Bethany
dc.contributor.author Chowdhuri, Sripriya Roy
dc.contributor.author Singh, Jyoti
dc.contributor.author Gupta, Manjari
dc.contributor.author Mishra, Alok
dc.contributor.other Software Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:21:33Z
dc.date.available 2024-07-05T15:21:33Z
dc.date.issued 2021
dc.description Mishra, Alok/0000-0003-1275-2050; gupta, Manjari/0000-0003-1939-5383; Gosala, Bethany/0000-0001-6866-0062; Roy Chowdhuri, Sripriya/0000-0003-0063-4137 en_US
dc.description.abstract Unified Modeling Language (UML) includes various types of diagrams that help to study, analyze, document, design, or develop any software efficiently. Therefore, UML diagrams are of great advantage for researchers, software developers, and academicians. Class diagrams are the most widely used UML diagrams for this purpose. Despite its recognition as a standard modeling language for Object-Oriented software, it is difficult to learn. Although there exist repositories that aids the users with the collection of UML diagrams, there is still much more to explore and develop in this domain. The objective of our research was to develop a tool that can automatically classify the images as UML class diagrams and non-UML class diagrams. Earlier research used Machine Learning techniques for classifying class diagrams. Thus, they are required to identify image features and investigate the impact of these features on the UML class diagrams classification problem. We developed a new approach for automatically classifying class diagrams using the approach of Convolutional Neural Network under the domain of Deep Learning. We have applied the code on Convolutional Neural Networks with and without the Regularization technique. Our tool receives JPEG/PNG/GIF/TIFF images as input and predicts whether it is a UML class diagram image or not. There is no need to tag images of class diagrams as UML class diagrams in our dataset. en_US
dc.identifier.doi 10.3390/app11094267
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85106179417
dc.identifier.uri https://doi.org/10.3390/app11094267
dc.identifier.uri https://hdl.handle.net/20.500.14411/2104
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Unified Modeling Language en_US
dc.subject Machine Learning (ML) en_US
dc.subject Object-Oriented modeling en_US
dc.subject Deep Learning (DL) en_US
dc.subject Convolutional Neural Networks (CNN) en_US
dc.title Automatic Classification of UML Class Diagrams Using Deep Learning Technique: Convolutional Neural Network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Mishra, Alok/0000-0003-1275-2050
gdc.author.id gupta, Manjari/0000-0003-1939-5383
gdc.author.id Gosala, Bethany/0000-0001-6866-0062
gdc.author.id Roy Chowdhuri, Sripriya/0000-0003-0063-4137
gdc.author.institutional Mıshra, Alok
gdc.author.scopusid 57223794828
gdc.author.scopusid 57223814234
gdc.author.scopusid 57208875732
gdc.author.scopusid 16039448000
gdc.author.scopusid 7201441575
gdc.author.wosid Gosala, Bethany/HTQ-9810-2023
gdc.author.wosid Mishra, Alok/AAE-2673-2019
gdc.author.wosid gupta, Manjari/AAF-8746-2019
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Gosala, Bethany; Chowdhuri, Sripriya Roy; Singh, Jyoti; Gupta, Manjari] Banaras Hindu Univ, Ctr Interdisciplinary Math Sci, Comp Sci DST, Varanasi 221005, Uttar Pradesh, India; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Molde Univ Coll, Fac Logist, N-6410 Molde, Norway en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 4267
gdc.description.volume 11 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3161575841
gdc.identifier.wos WOS:000649873400001
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 19.0
gdc.oaire.influence 4.629188E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Technology
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords Machine Learning (ML)
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Object-Oriented modeling
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Convolutional Neural Networks (CNN)
gdc.oaire.keywords Deep Learning (DL)
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords Unified Modeling Language
gdc.oaire.keywords QD1-999
gdc.oaire.popularity 1.9789933E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 2.477
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 21
gdc.plumx.crossrefcites 22
gdc.plumx.mendeley 156
gdc.plumx.scopuscites 24
gdc.scopus.citedcount 24
gdc.wos.citedcount 13
relation.isAuthorOfPublication de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscovery de97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections