Automatic Classification of UML Class Diagrams Using Deep Learning Technique: Convolutional Neural Network

dc.authoridMishra, Alok/0000-0003-1275-2050
dc.authoridgupta, Manjari/0000-0003-1939-5383
dc.authoridGosala, Bethany/0000-0001-6866-0062
dc.authoridRoy Chowdhuri, Sripriya/0000-0003-0063-4137
dc.authorscopusid57223794828
dc.authorscopusid57223814234
dc.authorscopusid57208875732
dc.authorscopusid16039448000
dc.authorscopusid7201441575
dc.authorwosidGosala, Bethany/HTQ-9810-2023
dc.authorwosidMishra, Alok/AAE-2673-2019
dc.authorwosidgupta, Manjari/AAF-8746-2019
dc.contributor.authorMıshra, Alok
dc.contributor.authorChowdhuri, Sripriya Roy
dc.contributor.authorSingh, Jyoti
dc.contributor.authorGupta, Manjari
dc.contributor.authorMishra, Alok
dc.contributor.otherSoftware Engineering
dc.date.accessioned2024-07-05T15:21:33Z
dc.date.available2024-07-05T15:21:33Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-temp[Gosala, Bethany; Chowdhuri, Sripriya Roy; Singh, Jyoti; Gupta, Manjari] Banaras Hindu Univ, Ctr Interdisciplinary Math Sci, Comp Sci DST, Varanasi 221005, Uttar Pradesh, India; [Mishra, Alok] Atilim Univ, Dept Software Engn, TR-06830 Ankara, Turkey; [Mishra, Alok] Molde Univ Coll, Fac Logist, N-6410 Molde, Norwayen_US
dc.descriptionMishra, Alok/0000-0003-1275-2050; gupta, Manjari/0000-0003-1939-5383; Gosala, Bethany/0000-0001-6866-0062; Roy Chowdhuri, Sripriya/0000-0003-0063-4137en_US
dc.description.abstractUnified Modeling Language (UML) includes various types of diagrams that help to study, analyze, document, design, or develop any software efficiently. Therefore, UML diagrams are of great advantage for researchers, software developers, and academicians. Class diagrams are the most widely used UML diagrams for this purpose. Despite its recognition as a standard modeling language for Object-Oriented software, it is difficult to learn. Although there exist repositories that aids the users with the collection of UML diagrams, there is still much more to explore and develop in this domain. The objective of our research was to develop a tool that can automatically classify the images as UML class diagrams and non-UML class diagrams. Earlier research used Machine Learning techniques for classifying class diagrams. Thus, they are required to identify image features and investigate the impact of these features on the UML class diagrams classification problem. We developed a new approach for automatically classifying class diagrams using the approach of Convolutional Neural Network under the domain of Deep Learning. We have applied the code on Convolutional Neural Networks with and without the Regularization technique. Our tool receives JPEG/PNG/GIF/TIFF images as input and predicts whether it is a UML class diagram image or not. There is no need to tag images of class diagrams as UML class diagrams in our dataset.en_US
dc.identifier.citation6
dc.identifier.doi10.3390/app11094267
dc.identifier.issn2076-3417
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85106179417
dc.identifier.urihttps://doi.org/10.3390/app11094267
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2104
dc.identifier.volume11en_US
dc.identifier.wosWOS:000649873400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectUnified Modeling Languageen_US
dc.subjectMachine Learning (ML)en_US
dc.subjectObject-Oriented modelingen_US
dc.subjectDeep Learning (DL)en_US
dc.subjectConvolutional Neural Networks (CNN)en_US
dc.titleAutomatic Classification of UML Class Diagrams Using Deep Learning Technique: Convolutional Neural Networken_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isAuthorOfPublication.latestForDiscoveryde97bc0b-032d-4567-835e-6cd0cb17b98b
relation.isOrgUnitOfPublicationd86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscoveryd86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections