Dynamical Systems and Poisson Structures

dc.contributor.author Guerses, Metin
dc.contributor.author Guseinov, Gusein Sh
dc.contributor.author Zheltukhin, Kostyantyn
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:12:03Z
dc.date.available 2024-07-05T15:12:03Z
dc.date.issued 2009
dc.description Zheltukhin, Kostyantyn/0000-0002-1098-7369; Gurses, Metin/0000-0002-3439-3952 en_US
dc.description.abstract We first consider the Hamiltonian formulation of n=3 systems, in general, and show that all dynamical systems in R-3 are locally bi-Hamiltonian. An algorithm is introduced to obtain Poisson structures of a given dynamical system. The construction of the Poisson structures is based on solving an associated first order linear partial differential equations. We find the Poisson structures of a dynamical system recently given by Bender et al. [J. Phys. A: Math. Theor. 40, F793 (2007)]. Secondly, we show that all dynamical systems in R-n are locally (n-1)-Hamiltonian. We give also an algorithm, similar to the case in R-3, to construct a rank two Poisson structure of dynamical systems in R-n. We give a classification of the dynamical systems with respect to the invariant functions of the vector field (X) over right arrow and show that all autonomous dynamical systems in R-n are super-integrable. (C) 2009 American Institute of Physics. [doi:10.1063/1.3257919] en_US
dc.description.sponsorship Turkish Academy of Sciences; Scientific and Technical Research Council of Turkey en_US
dc.description.sponsorship wish to thank Professor M. Blaszak for critical reading of the paper and for constructive comments. This work is partially supported by the Turkish Academy of Sciences and by the Scientific and Technical Research Council of Turkey. en_US
dc.identifier.doi 10.1063/1.3257919
dc.identifier.issn 0022-2488
dc.identifier.issn 1089-7658
dc.identifier.scopus 2-s2.0-72249092277
dc.identifier.uri https://doi.org/10.1063/1.3257919
dc.identifier.uri https://hdl.handle.net/20.500.14411/1530
dc.language.iso en en_US
dc.publisher Amer inst Physics en_US
dc.relation.ispartof Journal of Mathematical Physics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Dynamical Systems and Poisson Structures en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Zheltukhin, Kostyantyn/0000-0002-1098-7369
gdc.author.id Gurses, Metin/0000-0002-3439-3952
gdc.author.institutional Hüseyin, Hüseyin Şirin
gdc.author.scopusid 7003662154
gdc.author.scopusid 25026129500
gdc.author.scopusid 6603497099
gdc.author.wosid , Metin/T-3710-2019
gdc.author.wosid Zheltukhin, Kostyantyn/AAZ-6715-2020
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Guerses, Metin] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey; [Guseinov, Gusein Sh] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Zheltukhin, Kostyantyn] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.volume 50 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2054501912
gdc.identifier.wos WOS:000272755100015
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 5.0
gdc.oaire.influence 3.7755203E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Equations
gdc.oaire.keywords Nonlinear Sciences - Exactly Solvable and Integrable Systems
gdc.oaire.keywords Hamiltonian Dynamics
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords Mathematical Physics (math-ph)
gdc.oaire.keywords Exactly Solvable and Integrable Systems (nlin.SI)
gdc.oaire.keywords 531
gdc.oaire.keywords Hamiltonian dynamics
gdc.oaire.keywords Mathematical Physics
gdc.oaire.popularity 4.4661492E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 2
gdc.openalex.fwci 0.866
gdc.openalex.normalizedpercentile 0.7
gdc.opencitations.count 16
gdc.plumx.crossrefcites 14
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 15
gdc.scopus.citedcount 15
gdc.wos.citedcount 16
relation.isAuthorOfPublication f8b33fd5-3950-431e-a264-4375c09aa84e
relation.isAuthorOfPublication.latestForDiscovery f8b33fd5-3950-431e-a264-4375c09aa84e
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections