Increasing Accuracy of Two-Class Pattern Recognition With Enhanced Fuzzy Functions

dc.authorscopusid 35614300300
dc.authorscopusid 7006717125
dc.authorscopusid 24483208000
dc.authorscopusid 24482897800
dc.authorscopusid 14013450300
dc.contributor.author Celikyilmaz, Asli
dc.contributor.author Tuerksen, I. Burhan
dc.contributor.author Aktas, Ramazan
dc.contributor.author Doganay, M. Mete
dc.contributor.author Ceylan, N. Basak
dc.contributor.other Tourism Management
dc.date.accessioned 2024-07-05T14:33:55Z
dc.date.available 2024-07-05T14:33:55Z
dc.date.issued 2009
dc.department Atılım University en_US
dc.department-temp [Celikyilmaz, Asli; Tuerksen, I. Burhan] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada; [Tuerksen, I. Burhan; Aktas, Ramazan] TOBB Econ & Technol Univ, Ankara, Turkey; [Doganay, M. Mete] Cankaya Univ, Dept Business Adm, Ankara, Turkey; [Ceylan, N. Basak] Atilim Univ, Dept Business Adm, Ankara, Turkey en_US
dc.description.abstract In building an approximate fuzzy classifier system, significant effort is laid oil estimation and fine tuning of fuzzy sets. However, in such systems little thought is given to the way in which membership functions are combined within fuzzy rules. In this paper, a robust method, improved fuzzy classifier functions (IFCF) design is proposed for two-class pattern recognition problems. A supervised hybrid improved fuzzy Clustering for classification (IFC-C) algorithm is implemented for structure identification. IFC-C algorithm is based oil it dual optimization method, which yields simultaneous estimates of the parameters of (c-classification functions together with fuzzy c partitioning of dataset based oil a distance measure. The merit of novel IFCF is that the information oil natural grouping of data samples i.e., the membership values, are utilized as additional predictors of each fuzzy classifier function to improve accuracy of system model. Improved fuzzy classifier functions are approximated using statistical and soft computing approaches. A new semi-non-parametric inference mechanism is implemented for reasoning. The experimental results Of the new modeling approach indicate that the new IFCF is it promising method for two-class pattern recognition problems. (c) 2007 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 21
dc.identifier.doi 10.1016/j.eswa.2007.11.039
dc.identifier.endpage 1354 en_US
dc.identifier.issn 0957-4174
dc.identifier.issn 1873-6793
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-56649124794
dc.identifier.startpage 1337 en_US
dc.identifier.uri https://doi.org/10.1016/j.eswa.2007.11.039
dc.identifier.uri https://hdl.handle.net/20.500.14411/990
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000262178000039
dc.identifier.wosquality Q1
dc.institutionauthor Ceylan, Nildağ Başak
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 24
dc.subject Fuzzy classification en_US
dc.subject Improved fuzzy clustering en_US
dc.subject Fuzzy Functions en_US
dc.subject Data mining en_US
dc.subject Early warning system en_US
dc.subject Decision support systems en_US
dc.title Increasing Accuracy of Two-Class Pattern Recognition With Enhanced Fuzzy Functions en_US
dc.type Article en_US
dc.wos.citedbyCount 19
dspace.entity.type Publication
relation.isAuthorOfPublication 909954e7-ee7c-4c32-8d50-ede83c336061
relation.isAuthorOfPublication.latestForDiscovery 909954e7-ee7c-4c32-8d50-ede83c336061
relation.isOrgUnitOfPublication fa7389a7-6286-485f-8655-ffa9a4377091
relation.isOrgUnitOfPublication.latestForDiscovery fa7389a7-6286-485f-8655-ffa9a4377091

Files

Collections