Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data

dc.authoridDoruk, Ozgur/0000-0002-9217-0845
dc.authorscopusid8503734100
dc.authorwosidDoruk, Ozgur/T-9951-2018
dc.contributor.authorDoruk, Resat Ozgur
dc.contributor.otherElectrical-Electronics Engineering
dc.date.accessioned2024-07-05T15:29:56Z
dc.date.available2024-07-05T15:29:56Z
dc.date.issued2018
dc.departmentAtılım Universityen_US
dc.department-temp[Doruk, Resat Ozgur] Atilim Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkeyen_US
dc.descriptionDoruk, Ozgur/0000-0002-9217-0845en_US
dc.description.abstractWe present a modeling study aiming at the estimation of the parameters of a single neuron model from neural spiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neural spiking data will be obtained from point process simulation. The resultant data will be used in parameter estimation based on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms of stimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulated results presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF), amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison. The results showed that regardless of the stimulus type, the most effective parameter on the estimation performance appears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulus is applied in the estimation.en_US
dc.identifier.citationcount0
dc.identifier.doi10.3906/elk-1802-207
dc.identifier.endpage2314en_US
dc.identifier.issn1300-0632
dc.identifier.issn1303-6203
dc.identifier.issue5en_US
dc.identifier.scopus2-s2.0-85054471954
dc.identifier.scopusqualityQ3
dc.identifier.startpage2301en_US
dc.identifier.urihttps://doi.org/10.3906/elk-1802-207
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2956
dc.identifier.volume26en_US
dc.identifier.wosWOS:000448109200011
dc.identifier.wosqualityQ4
dc.institutionauthorDoruk, Reşat Özgür
dc.language.isoenen_US
dc.publisherTubitak Scientific & Technological Research Council Turkeyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.scopus.citedbyCount0
dc.subjectNeuron modelen_US
dc.subjectneural spikingen_US
dc.subjectfiring rateen_US
dc.subjectinhomogeneous Poisson point processesen_US
dc.subjectmaximum likelihood estimationen_US
dc.titleNeuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Dataen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublicationbbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscoverybbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections