Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data

dc.contributor.author Doruk, Resat Ozgur
dc.date.accessioned 2024-07-05T15:29:56Z
dc.date.available 2024-07-05T15:29:56Z
dc.date.issued 2018
dc.description Doruk, Ozgur/0000-0002-9217-0845 en_US
dc.description.abstract We present a modeling study aiming at the estimation of the parameters of a single neuron model from neural spiking data. The model receives a stimulus as input and provides the firing rate of the neuron as output. The neural spiking data will be obtained from point process simulation. The resultant data will be used in parameter estimation based on the inhomogeneous Poisson maximum likelihood method. The model will be stimulated by various forms of stimuli, which are modeled by a Fourier series (FS), exponential functions, and radial basis functions (RBFs). Tabulated results presenting cases with different sample sizes (# of repeated trials), stimulus component sizes (FS and RBF), amplitudes, and frequency ranges (FS) will be presented to validate the approach and provide a means of comparison. The results showed that regardless of the stimulus type, the most effective parameter on the estimation performance appears to be the sample size. In addition, the lowest variance of the estimates is obtained when a Fourier series stimulus is applied in the estimation. en_US
dc.identifier.doi 10.3906/elk-1802-207
dc.identifier.issn 1300-0632
dc.identifier.issn 1303-6203
dc.identifier.scopus 2-s2.0-85054471954
dc.identifier.uri https://doi.org/10.3906/elk-1802-207
dc.identifier.uri https://hdl.handle.net/20.500.14411/2956
dc.language.iso en en_US
dc.publisher Tubitak Scientific & Technological Research Council Turkey en_US
dc.relation.ispartof TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Neuron model en_US
dc.subject neural spiking en_US
dc.subject firing rate en_US
dc.subject inhomogeneous Poisson point processes en_US
dc.subject maximum likelihood estimation en_US
dc.title Neuron Modeling: Estimating the Parameters of a Neuron Model From Neural Spiking Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Doruk, Ozgur/0000-0002-9217-0845
gdc.author.scopusid 8503734100
gdc.author.wosid Doruk, Ozgur/T-9951-2018
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Doruk, Resat Ozgur] Atilim Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkey en_US
gdc.description.endpage 2314 en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 2301 en_US
gdc.description.volume 26 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W2895499442
gdc.identifier.wos WOS:000448109200011
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.522353E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.7785605E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.fwci 0.14478251
gdc.openalex.normalizedpercentile 0.47
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Doruk, Reşat Özgür
gdc.wos.citedcount 0
relation.isAuthorOfPublication bbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isAuthorOfPublication.latestForDiscovery bbc93c72-5a45-4b28-9b05-5ae035e52a76
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections