Experimental Investigation of a Natural Zeolite-Water Adsorption Cooling Unit

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this study, a thermally driven adsorption cooling unit using natural zeolite-water as the adsorbent-refrigerant pair has been built and its performance investigated experimentally at various evaporator temperatures. The primary components of the cooling unit are a shell and tube adsorbent bed, an evaporator, a condenser, heating and cooling baths, measurement instruments and supplementary system components. The adsorbent bed is considered to enhance the bed's heat and mass transfer characteristics; the bed consists of an inner vacuum tube filled with zeolite (zeolite tube) inserted into a larger tubular shell. Under the experimental conditions of 45 degrees C adsorption, 150 degrees C desorption, 30 degrees C condenser and 22.5 degrees C, 15 degrees C and 10 degrees C evaporator temperatures, the COP of the adsorption cooling unit is approximately 0.25 and the maximum average volumetric cooling power density (SCR,) and mass specific cooling power density per kg adsorbent (SCP) of the cooling unit are 5.2 kW/m(3) and 7 W/kg, respectively. (C) 2011 Elsevier Ltd. All rights reserved.

Description

Baker, Derek/0000-0003-4163-1821; Solmaz, Ismail/0000-0002-3020-4798

Keywords

Adsorption, Cooling, Natural zeolite-water, COP, SCP(v), SCP

Turkish CoHE Thesis Center URL

Fields of Science

0211 other engineering and technologies, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
59

Source

Applied Energy

Volume

88

Issue

11

Start Page

4206

End Page

4213

Collections

PlumX Metrics
Citations

CrossRef : 61

Scopus : 66

Captures

Mendeley Readers : 83

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
7.52510356

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

15

LIFE ON LAND
LIFE ON LAND Logo