Predictive Rental Values Model for Low-Income Earners in Slums: the Case of Ijora, Nigeria

dc.contributor.author Iroham, Chukwuemeka O.
dc.contributor.author Misra, Sanjay
dc.contributor.author Emebo, Onyeka C.
dc.contributor.author Okagbue, Hilary, I
dc.date.accessioned 2024-07-05T15:19:49Z
dc.date.available 2024-07-05T15:19:49Z
dc.date.issued 2023
dc.description Misra, Sanjay/0000-0002-3556-9331 en_US
dc.description.abstract It is well known most often that values of properties tend to hike at the effluxion of time. This has necessitated the adoption of predictive models in interpreting outcomes in the property market in the future. Earlier studies have been oblivious of such models' outcomes as it affects any focal group, particularly the vulnerable. This present study focuses on the low-income earners found in the slum. The Ijora community in Lagos was the highlight of this study, particularly Ijora Badia and Ijora Oloye, regarded as slums according to the UNDP report. The entire fifty-two (52) local agents in the Ijora community were surveyed in cross-sectional survey research that entailed the questionnaire's issuance. The nexus of data collection, pre-processing, data analysis, algorithm application, and model evaluation resulted in retrieving rental values within the years 2010 and 2019 on two predominant residential property types of self-contain and one-bedroom flats found within the community. Three selected algorithms, Artificial Neural Network (ANN), Support Vector Machine, and Logistic Regression, were essentially used as classifiers but trained to predict the continuous values. These algorithms were implemented through the use of Python's SciKit-learn Library and RapidMiner. The findings revealed that though all three models gave accurate predictions, Logistic Regression was the highest with low error values. It was recommended that Logistic Regression be applied but with much data set of property values of low-income earners over much more period. This study will contribute to the Sustainable development goals(SDG) 11(Sustainable cities and communities) of the United Nations to benefit developing countries, especially in sub-Saharan Africa. en_US
dc.identifier.doi 10.1080/15623599.2021.1975021
dc.identifier.issn 1562-3599
dc.identifier.issn 2331-2327
dc.identifier.scopus 2-s2.0-85114622706
dc.identifier.uri https://doi.org/10.1080/15623599.2021.1975021
dc.identifier.uri https://hdl.handle.net/20.500.14411/2022
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.ispartof International Journal of Construction Management
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Predictive algorithm en_US
dc.subject rental values en_US
dc.subject low-income earners en_US
dc.subject slum en_US
dc.subject Ijora en_US
dc.subject sustainability en_US
dc.subject SDG-11 en_US
dc.subject Nigeria en_US
dc.title Predictive Rental Values Model for Low-Income Earners in Slums: the Case of Ijora, Nigeria en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.scopusid 56968131000
gdc.author.scopusid 56962766700
gdc.author.scopusid 56669831200
gdc.author.scopusid 56438006100
gdc.author.wosid Okagbue, Hilary Izuchukwu/AAD-1102-2020
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Iroham, Chukwuemeka O.] Covenant Univ, Dept Estate Management, Ota, Ogun State, Nigeria; [Misra, Sanjay] Atilim Univ, Dept Comp Engn, Ankara, Turkey; [Misra, Sanjay] Covenant Univ, Dept Elect & Informat Engn, Ota, Ogun State, Nigeria; [Emebo, Onyeka C.] Covenant Univ, Dept Comp & Informat Sci, Ota, Ogun State, Nigeria; [Okagbue, Hilary, I] Covenant Univ, Dept Math, Ota, Ogun State, Nigeria en_US
gdc.description.endpage 1435 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1426 en_US
gdc.description.volume 23 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W3200340483
gdc.identifier.wos WOS:000694604200001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.764194E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 4.602671E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.88216565
gdc.openalex.normalizedpercentile 0.84
gdc.opencitations.count 4
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 38
gdc.plumx.scopuscites 4
gdc.scopus.citedcount 4
gdc.virtual.author Mısra, Sanjay
gdc.wos.citedcount 3
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery e0809e2c-77a7-4f04-9cb0-4bccec9395fa

Files

Collections