Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets

dc.authoridŞengül, Gökhan/0000-0003-2273-4411
dc.authoridISGOR, Belgin S/0000-0001-5716-3159
dc.authorscopusid43261651300
dc.authorscopusid57190741107
dc.authorscopusid8402817900
dc.authorscopusid7801688219
dc.authorwosidIsgor, Yasemin/B-3322-2010
dc.authorwosidSengul, Gokhan/G-8213-2016
dc.authorwosidŞengül, Gökhan/AAA-2788-2022
dc.authorwosidIsgor, Yasemin G./AAE-4859-2021
dc.authorwosidISGOR, Belgin S/B-7829-2013
dc.contributor.authorOzkan, Akin
dc.contributor.authorIsgor, Sultan Belgin
dc.contributor.authorSengul, Gokhan
dc.contributor.authorIsgor, Yasemin Gulgun
dc.contributor.otherChemical Engineering
dc.contributor.otherComputer Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:28:46Z
dc.date.available2024-07-05T15:28:46Z
dc.date.issued2019
dc.departmentAtılım Universityen_US
dc.department-temp[Ozkan, Akin] Atilim Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkey; [Isgor, Sultan Belgin] Atilim Univ, Fac Engn, Dept Chem Engn & Appl Chem, Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Isgor, Yasemin Gulgun] Ankara Univ, Vocat Sch Hlth, Med Lab Tech, Ankara, Turkeyen_US
dc.descriptionŞengül, Gökhan/0000-0003-2273-4411; ISGOR, Belgin S/0000-0001-5716-3159en_US
dc.description.abstractBackground: Dye-exclusion based cell viability analysis has been broadly used in cell biology including anticancer drug discovery studies. Viability analysis refers to the whole decision making process for the distinction of dead cells from live ones. Basically, cell culture samples are dyed with a special stain called trypan blue, so that the dead cells are selectively colored to darkish. This distinction provides critical information that may be used to expose influences of the studied drug on considering cell culture including cancer. Examiner's experience and tiredness substantially affect the consistency throughout the manual observation of cell viability. The unsteady results of cell viability may end up with biased experimental results accordingly. Therefore, a machine learning based automated decision-making procedure is inevitably needed to improve consistency of the cell viability analysis. Objective: In this study, we investigate various combinations of classifiers and feature extractors (i.e. classification models) to maximize the performance of computer vision-based viability analysis. Method: The classification models are tested on novel hemocytometer image datasets which contain two types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). Results: From the experimental results, k-Nearest Neighbor (KNN) and Random Forest (RF) by combining Local Phase Quantization (LPQ) achieve the lowest misclassification rates that are 0.031 and 0.082, respectively. Conclusion: The experimental results show that KNN and RF with LPQ can be powerful alternatives to the conventional manual cell viability analysis. Also, the collected datasets are released from the "biochem.atilim.edu.tr/datasets/ " web address publically to academic studies.en_US
dc.identifier.citation9
dc.identifier.doi10.2174/1574893614666181120093740
dc.identifier.endpage114en_US
dc.identifier.issn1574-8936
dc.identifier.issn2212-392X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85060978470
dc.identifier.scopusqualityQ2
dc.identifier.startpage108en_US
dc.identifier.urihttps://doi.org/10.2174/1574893614666181120093740
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2840
dc.identifier.volume14en_US
dc.identifier.wosWOS:000458623100003
dc.identifier.wosqualityQ1
dc.institutionauthorİşgör, Sultan Belgin
dc.institutionauthorŞengül, Gökhan
dc.institutionauthorÖzkan, Akın
dc.language.isoenen_US
dc.publisherBentham Science Publ Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCell viabilityen_US
dc.subjectpattern classificationen_US
dc.subjectcomputer visionen_US
dc.subjecthemocytometeren_US
dc.subjectcancer cellsen_US
dc.subjectHL60en_US
dc.subjectK562en_US
dc.titleBenchmarking Classification Models for Cell Viability on Novel Cancer Image Datasetsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isAuthorOfPublicationf291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublicationf399fa5d-a26e-401f-84b2-4e77e16bc0a7
relation.isAuthorOfPublication.latestForDiscovery8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isOrgUnitOfPublicationbebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoverybebae599-17cc-4f0b-997b-a4164a19b94b

Files

Collections