Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets

dc.contributor.author Ozkan, Akin
dc.contributor.author Isgor, Sultan Belgin
dc.contributor.author Sengul, Gokhan
dc.contributor.author Isgor, Yasemin Gulgun
dc.contributor.other Chemical Engineering
dc.contributor.other Computer Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:28:46Z
dc.date.available 2024-07-05T15:28:46Z
dc.date.issued 2019
dc.description Şengül, Gökhan/0000-0003-2273-4411; ISGOR, Belgin S/0000-0001-5716-3159 en_US
dc.description.abstract Background: Dye-exclusion based cell viability analysis has been broadly used in cell biology including anticancer drug discovery studies. Viability analysis refers to the whole decision making process for the distinction of dead cells from live ones. Basically, cell culture samples are dyed with a special stain called trypan blue, so that the dead cells are selectively colored to darkish. This distinction provides critical information that may be used to expose influences of the studied drug on considering cell culture including cancer. Examiner's experience and tiredness substantially affect the consistency throughout the manual observation of cell viability. The unsteady results of cell viability may end up with biased experimental results accordingly. Therefore, a machine learning based automated decision-making procedure is inevitably needed to improve consistency of the cell viability analysis. Objective: In this study, we investigate various combinations of classifiers and feature extractors (i.e. classification models) to maximize the performance of computer vision-based viability analysis. Method: The classification models are tested on novel hemocytometer image datasets which contain two types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). Results: From the experimental results, k-Nearest Neighbor (KNN) and Random Forest (RF) by combining Local Phase Quantization (LPQ) achieve the lowest misclassification rates that are 0.031 and 0.082, respectively. Conclusion: The experimental results show that KNN and RF with LPQ can be powerful alternatives to the conventional manual cell viability analysis. Also, the collected datasets are released from the "biochem.atilim.edu.tr/datasets/ " web address publically to academic studies. en_US
dc.identifier.doi 10.2174/1574893614666181120093740
dc.identifier.issn 1574-8936
dc.identifier.issn 2212-392X
dc.identifier.scopus 2-s2.0-85060978470
dc.identifier.uri https://doi.org/10.2174/1574893614666181120093740
dc.identifier.uri https://hdl.handle.net/20.500.14411/2840
dc.language.iso en en_US
dc.publisher Bentham Science Publ Ltd en_US
dc.relation.ispartof Current Bioinformatics
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cell viability en_US
dc.subject pattern classification en_US
dc.subject computer vision en_US
dc.subject hemocytometer en_US
dc.subject cancer cells en_US
dc.subject HL60 en_US
dc.subject K562 en_US
dc.title Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Şengül, Gökhan/0000-0003-2273-4411
gdc.author.id ISGOR, Belgin S/0000-0001-5716-3159
gdc.author.institutional İşgör, Sultan Belgin
gdc.author.institutional Şengül, Gökhan
gdc.author.institutional Özkan, Akın
gdc.author.scopusid 43261651300
gdc.author.scopusid 57190741107
gdc.author.scopusid 8402817900
gdc.author.scopusid 7801688219
gdc.author.wosid Isgor, Yasemin/B-3322-2010
gdc.author.wosid Sengul, Gokhan/G-8213-2016
gdc.author.wosid Şengül, Gökhan/AAA-2788-2022
gdc.author.wosid Isgor, Yasemin G./AAE-4859-2021
gdc.author.wosid ISGOR, Belgin S/B-7829-2013
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ozkan, Akin] Atilim Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkey; [Isgor, Sultan Belgin] Atilim Univ, Fac Engn, Dept Chem Engn & Appl Chem, Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Isgor, Yasemin Gulgun] Ankara Univ, Vocat Sch Hlth, Med Lab Tech, Ankara, Turkey en_US
gdc.description.endpage 114 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 108 en_US
gdc.description.volume 14 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2901628348
gdc.identifier.wos WOS:000458623100003
gdc.oaire.diamondjournal false
gdc.oaire.impulse 8.0
gdc.oaire.influence 2.8638667E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 6.199246E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.fwci 0.724
gdc.openalex.normalizedpercentile 0.73
gdc.opencitations.count 8
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 9
gdc.scopus.citedcount 9
gdc.wos.citedcount 9
relation.isAuthorOfPublication 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication f399fa5d-a26e-401f-84b2-4e77e16bc0a7
relation.isAuthorOfPublication.latestForDiscovery 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isOrgUnitOfPublication bebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery bebae599-17cc-4f0b-997b-a4164a19b94b

Files

Collections