Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets

dc.authorid Şengül, Gökhan/0000-0003-2273-4411
dc.authorid ISGOR, Belgin S/0000-0001-5716-3159
dc.authorscopusid 43261651300
dc.authorscopusid 57190741107
dc.authorscopusid 8402817900
dc.authorscopusid 7801688219
dc.authorwosid Isgor, Yasemin/B-3322-2010
dc.authorwosid Sengul, Gokhan/G-8213-2016
dc.authorwosid Şengül, Gökhan/AAA-2788-2022
dc.authorwosid Isgor, Yasemin G./AAE-4859-2021
dc.authorwosid ISGOR, Belgin S/B-7829-2013
dc.contributor.author Ozkan, Akin
dc.contributor.author Isgor, Sultan Belgin
dc.contributor.author Sengul, Gokhan
dc.contributor.author Isgor, Yasemin Gulgun
dc.contributor.other Chemical Engineering
dc.contributor.other Computer Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:28:46Z
dc.date.available 2024-07-05T15:28:46Z
dc.date.issued 2019
dc.department Atılım University en_US
dc.department-temp [Ozkan, Akin] Atilim Univ, Fac Engn, Dept Elect & Elect Engn, Ankara, Turkey; [Isgor, Sultan Belgin] Atilim Univ, Fac Engn, Dept Chem Engn & Appl Chem, Ankara, Turkey; [Sengul, Gokhan] Atilim Univ, Fac Engn, Dept Comp Engn, Ankara, Turkey; [Isgor, Yasemin Gulgun] Ankara Univ, Vocat Sch Hlth, Med Lab Tech, Ankara, Turkey en_US
dc.description Şengül, Gökhan/0000-0003-2273-4411; ISGOR, Belgin S/0000-0001-5716-3159 en_US
dc.description.abstract Background: Dye-exclusion based cell viability analysis has been broadly used in cell biology including anticancer drug discovery studies. Viability analysis refers to the whole decision making process for the distinction of dead cells from live ones. Basically, cell culture samples are dyed with a special stain called trypan blue, so that the dead cells are selectively colored to darkish. This distinction provides critical information that may be used to expose influences of the studied drug on considering cell culture including cancer. Examiner's experience and tiredness substantially affect the consistency throughout the manual observation of cell viability. The unsteady results of cell viability may end up with biased experimental results accordingly. Therefore, a machine learning based automated decision-making procedure is inevitably needed to improve consistency of the cell viability analysis. Objective: In this study, we investigate various combinations of classifiers and feature extractors (i.e. classification models) to maximize the performance of computer vision-based viability analysis. Method: The classification models are tested on novel hemocytometer image datasets which contain two types of cancer cell images, namely, caucasian promyelocytic leukemia (HL60), and chronic myelogenous leukemia (K562). Results: From the experimental results, k-Nearest Neighbor (KNN) and Random Forest (RF) by combining Local Phase Quantization (LPQ) achieve the lowest misclassification rates that are 0.031 and 0.082, respectively. Conclusion: The experimental results show that KNN and RF with LPQ can be powerful alternatives to the conventional manual cell viability analysis. Also, the collected datasets are released from the "biochem.atilim.edu.tr/datasets/ " web address publically to academic studies. en_US
dc.identifier.citationcount 9
dc.identifier.doi 10.2174/1574893614666181120093740
dc.identifier.endpage 114 en_US
dc.identifier.issn 1574-8936
dc.identifier.issn 2212-392X
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85060978470
dc.identifier.scopusquality Q2
dc.identifier.startpage 108 en_US
dc.identifier.uri https://doi.org/10.2174/1574893614666181120093740
dc.identifier.uri https://hdl.handle.net/20.500.14411/2840
dc.identifier.volume 14 en_US
dc.identifier.wos WOS:000458623100003
dc.identifier.wosquality Q1
dc.institutionauthor İşgör, Sultan Belgin
dc.institutionauthor Şengül, Gökhan
dc.institutionauthor Özkan, Akın
dc.language.iso en en_US
dc.publisher Bentham Science Publ Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 9
dc.subject Cell viability en_US
dc.subject pattern classification en_US
dc.subject computer vision en_US
dc.subject hemocytometer en_US
dc.subject cancer cells en_US
dc.subject HL60 en_US
dc.subject K562 en_US
dc.title Benchmarking Classification Models for Cell Viability on Novel Cancer Image Datasets en_US
dc.type Article en_US
dc.wos.citedbyCount 9
dspace.entity.type Publication
relation.isAuthorOfPublication 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isAuthorOfPublication f291b4ce-c625-4e8e-b2b7-b8cddbac6c7b
relation.isAuthorOfPublication f399fa5d-a26e-401f-84b2-4e77e16bc0a7
relation.isAuthorOfPublication.latestForDiscovery 8b4f43cd-ab34-4c90-b940-b1cddf5df5ad
relation.isOrgUnitOfPublication bebae599-17cc-4f0b-997b-a4164a19b94b
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery bebae599-17cc-4f0b-997b-a4164a19b94b

Files

Collections