Text Classification Using Improved Bidirectional Transformer

dc.authorid YILDIZ, Beytullah/0000-0001-7664-5145
dc.authorid Tezgider, Murat/0000-0002-4918-5697
dc.authorscopusid 57207471698
dc.authorscopusid 14632851900
dc.authorscopusid 8338657900
dc.contributor.author Tezgider, Murat
dc.contributor.author Yıldız, Beytullah
dc.contributor.author Yildiz, Beytullah
dc.contributor.author Aydin, Galip
dc.contributor.author Yıldız, Beytullah
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:21:19Z
dc.date.available 2024-07-05T15:21:19Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Tezgider, Murat; Aydin, Galip] Firat Univ, Fac Engn, Dept Comp Engn, TR-23200 Elazig, Turkey; [Yildiz, Beytullah] Atilim Univ, Sch Engn, Dept Software Engn, Ankara, Turkey en_US
dc.description YILDIZ, Beytullah/0000-0001-7664-5145; Tezgider, Murat/0000-0002-4918-5697 en_US
dc.description.abstract Text data have an important place in our daily life. A huge amount of text data is generated everyday. As a result, automation becomes necessary to handle these large text data. Recently, we are witnessing important developments with the adaptation of new approaches in text processing. Attention mechanisms and transformers are emerging as methods with significant potential for text processing. In this study, we introduced a bidirectional transformer (BiTransformer) constructed using two transformer encoder blocks that utilize bidirectional position encoding to take into account the forward and backward position information of text data. We also created models to evaluate the contribution of attention mechanisms to the classification process. Four models, including long short term memory, attention, transformer, and BiTransformer, were used to conduct experiments on a large Turkish text dataset consisting of 30 categories. The effect of using pretrained embedding on models was also investigated. Experimental results show that the classification models using transformer and attention give promising results compared with classical deep learning models. We observed that the BiTransformer we proposed showed superior performance in text classification. en_US
dc.identifier.citationcount 14
dc.identifier.doi 10.1002/cpe.6486
dc.identifier.issn 1532-0626
dc.identifier.issn 1532-0634
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-85110364023
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1002/cpe.6486
dc.identifier.uri https://hdl.handle.net/20.500.14411/2048
dc.identifier.volume 34 en_US
dc.identifier.wos WOS:000673965600001
dc.identifier.wosquality Q3
dc.institutionauthor Yıldız, Beytullah
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 37
dc.subject attention en_US
dc.subject deep learning en_US
dc.subject machine learning en_US
dc.subject text classification en_US
dc.subject text processing en_US
dc.subject transformer en_US
dc.title Text Classification Using Improved Bidirectional Transformer en_US
dc.type Article en_US
dc.wos.citedbyCount 23
dspace.entity.type Publication
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections