Text Classification Using Improved Bidirectional Transformer

dc.contributor.author Tezgider, Murat
dc.contributor.author Yıldız, Beytullah
dc.contributor.author Yildiz, Beytullah
dc.contributor.author Aydin, Galip
dc.contributor.author Yıldız, Beytullah
dc.contributor.other Software Engineering
dc.date.accessioned 2024-07-05T15:21:19Z
dc.date.available 2024-07-05T15:21:19Z
dc.date.issued 2022
dc.description YILDIZ, Beytullah/0000-0001-7664-5145; Tezgider, Murat/0000-0002-4918-5697 en_US
dc.description.abstract Text data have an important place in our daily life. A huge amount of text data is generated everyday. As a result, automation becomes necessary to handle these large text data. Recently, we are witnessing important developments with the adaptation of new approaches in text processing. Attention mechanisms and transformers are emerging as methods with significant potential for text processing. In this study, we introduced a bidirectional transformer (BiTransformer) constructed using two transformer encoder blocks that utilize bidirectional position encoding to take into account the forward and backward position information of text data. We also created models to evaluate the contribution of attention mechanisms to the classification process. Four models, including long short term memory, attention, transformer, and BiTransformer, were used to conduct experiments on a large Turkish text dataset consisting of 30 categories. The effect of using pretrained embedding on models was also investigated. Experimental results show that the classification models using transformer and attention give promising results compared with classical deep learning models. We observed that the BiTransformer we proposed showed superior performance in text classification. en_US
dc.identifier.doi 10.1002/cpe.6486
dc.identifier.issn 1532-0626
dc.identifier.issn 1532-0634
dc.identifier.scopus 2-s2.0-85110364023
dc.identifier.uri https://doi.org/10.1002/cpe.6486
dc.identifier.uri https://hdl.handle.net/20.500.14411/2048
dc.language.iso en en_US
dc.publisher Wiley en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject attention en_US
dc.subject deep learning en_US
dc.subject machine learning en_US
dc.subject text classification en_US
dc.subject text processing en_US
dc.subject transformer en_US
dc.title Text Classification Using Improved Bidirectional Transformer en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id YILDIZ, Beytullah/0000-0001-7664-5145
gdc.author.id Tezgider, Murat/0000-0002-4918-5697
gdc.author.institutional Yıldız, Beytullah
gdc.author.scopusid 57207471698
gdc.author.scopusid 14632851900
gdc.author.scopusid 8338657900
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Tezgider, Murat; Aydin, Galip] Firat Univ, Fac Engn, Dept Comp Engn, TR-23200 Elazig, Turkey; [Yildiz, Beytullah] Atilim Univ, Sch Engn, Dept Software Engn, Ankara, Turkey en_US
gdc.description.issue 9 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 34 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3186001839
gdc.identifier.wos WOS:000673965600001
gdc.openalex.fwci 3.442
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 28
gdc.plumx.crossrefcites 23
gdc.plumx.mendeley 28
gdc.plumx.scopuscites 41
gdc.scopus.citedcount 41
gdc.wos.citedcount 25
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isAuthorOfPublication.latestForDiscovery 8eb144cb-95ff-4557-a99c-cd0ffa90749d
relation.isOrgUnitOfPublication d86bbe4b-0f69-4303-a6de-c7ec0c515da5
relation.isOrgUnitOfPublication.latestForDiscovery d86bbe4b-0f69-4303-a6de-c7ec0c515da5

Files

Collections