LIFE hybrid reactor as reactor grade plutonium burner

dc.authorscopusid 7102942712
dc.authorscopusid 35615200600
dc.authorscopusid 8836601900
dc.authorwosid Şahin, Sŭmer/C-6252-2013
dc.authorwosid Sahin, Haci Mehmet/JEZ-4428-2023
dc.contributor.author Sahin, Sumer
dc.contributor.author Sahin, Haci Mehmet
dc.contributor.author Acir, Adem
dc.contributor.other Department of Mechanical Engineering
dc.date.accessioned 2024-07-05T14:28:21Z
dc.date.available 2024-07-05T14:28:21Z
dc.date.issued 2012
dc.department Atılım University en_US
dc.department-temp [Sahin, Sumer] Atilim Univ, Fac Engn, TR-06836 Ankara, Turkey; [Sahin, Haci Mehmet; Acir, Adem] Gazi Univ Teknikokullar, Fac Technol, TR-06503 Ankara, Turkey en_US
dc.description.abstract The early version of the conceptual modified design of the Laser Inertial Confinement Fusion Fission Energy (LIFE) engine consists of a spherical fusion chamber of 5 m diameter, surrounded by a multi-layered blanket. The first wall is made of 2 cm thick ODS and followed by a Li17Pb83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the FLIBE molten salt zone (50 cm), containing fissionable fuel. A 3rd ODS layer (2 cm) separates the molten salt zone on the right side from the graphite reflector (30 cm). Calculations have been conducted for a constant fusion driver power of 500 MWth, in S-8-P-3 approximation using 238-neutron groups. Reactor grade (RG) plutonium carbide fuel in form of TRISO particles with volume fractions of 2%, 3%, 4%, 5% and 6% have been dispersed homogenously in the FLIBE coolant. Tritium breeding ratio (TBR) values per incident fusion neutron for the above cited cases start with TBR = 1.35, 1.52, 1.73, 2.02 and 2.47, respectively. With the depletion of fissionable RG-Pu isotopes, TBR decreases gradually. At startup, higher fissionable fuel content in the molten salt leads to higher blanket energy multiplication, namely M-0 = 3.8, 5.5, 7.7, 10.8 and 15.4 with 2%, 3%, 4%, 5% and 6% TRISO volume fraction, respectively. Calculations have led to very high burn up values (>400,000 MD.D/MT). TRISO particles can withstand such high burn ups. Such high burn ups would lead to drastic reduction of final nuclear waste per unit energy production. (C) 2012 Elsevier Ltd. All rights reserved. en_US
dc.identifier.citationcount 21
dc.identifier.doi 10.1016/j.enconman.2011.12.031
dc.identifier.endpage 50 en_US
dc.identifier.issn 0196-8904
dc.identifier.issn 1879-2227
dc.identifier.scopus 2-s2.0-84867005928
dc.identifier.startpage 44 en_US
dc.identifier.uri https://doi.org/10.1016/j.enconman.2011.12.031
dc.identifier.uri https://hdl.handle.net/20.500.14411/362
dc.identifier.volume 63 en_US
dc.identifier.wos WOS:000309897700008
dc.identifier.wosquality Q1
dc.institutionauthor Şahin, Sümer
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 26
dc.subject Inertial fusion energy en_US
dc.subject TRISO fuel en_US
dc.subject FLIBE molten salt en_US
dc.subject National ignition facility en_US
dc.subject Reactor-grade plutonium en_US
dc.subject Fusion-fission (hybrid) reactors en_US
dc.title LIFE hybrid reactor as reactor grade plutonium burner en_US
dc.type Article en_US
dc.wos.citedbyCount 21
dspace.entity.type Publication
relation.isAuthorOfPublication 565a82c2-51d6-4b83-98c0-f1bcbae75db9
relation.isAuthorOfPublication.latestForDiscovery 565a82c2-51d6-4b83-98c0-f1bcbae75db9
relation.isOrgUnitOfPublication f77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication.latestForDiscovery f77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections