LIFE hybrid reactor as reactor grade plutonium burner

dc.authorscopusid7102942712
dc.authorscopusid35615200600
dc.authorscopusid8836601900
dc.authorwosidŞahin, Sŭmer/C-6252-2013
dc.authorwosidSahin, Haci Mehmet/JEZ-4428-2023
dc.contributor.authorŞahin, Sümer
dc.contributor.authorSahin, Haci Mehmet
dc.contributor.authorAcir, Adem
dc.contributor.otherDepartment of Mechanical Engineering
dc.date.accessioned2024-07-05T14:28:21Z
dc.date.available2024-07-05T14:28:21Z
dc.date.issued2012
dc.departmentAtılım Universityen_US
dc.department-temp[Sahin, Sumer] Atilim Univ, Fac Engn, TR-06836 Ankara, Turkey; [Sahin, Haci Mehmet; Acir, Adem] Gazi Univ Teknikokullar, Fac Technol, TR-06503 Ankara, Turkeyen_US
dc.description.abstractThe early version of the conceptual modified design of the Laser Inertial Confinement Fusion Fission Energy (LIFE) engine consists of a spherical fusion chamber of 5 m diameter, surrounded by a multi-layered blanket. The first wall is made of 2 cm thick ODS and followed by a Li17Pb83 zone (2 cm), acting as neutron multiplier, tritium breeding and front coolant zone. It is separated by an ODS layer (2 cm) from the FLIBE molten salt zone (50 cm), containing fissionable fuel. A 3rd ODS layer (2 cm) separates the molten salt zone on the right side from the graphite reflector (30 cm). Calculations have been conducted for a constant fusion driver power of 500 MWth, in S-8-P-3 approximation using 238-neutron groups. Reactor grade (RG) plutonium carbide fuel in form of TRISO particles with volume fractions of 2%, 3%, 4%, 5% and 6% have been dispersed homogenously in the FLIBE coolant. Tritium breeding ratio (TBR) values per incident fusion neutron for the above cited cases start with TBR = 1.35, 1.52, 1.73, 2.02 and 2.47, respectively. With the depletion of fissionable RG-Pu isotopes, TBR decreases gradually. At startup, higher fissionable fuel content in the molten salt leads to higher blanket energy multiplication, namely M-0 = 3.8, 5.5, 7.7, 10.8 and 15.4 with 2%, 3%, 4%, 5% and 6% TRISO volume fraction, respectively. Calculations have led to very high burn up values (>400,000 MD.D/MT). TRISO particles can withstand such high burn ups. Such high burn ups would lead to drastic reduction of final nuclear waste per unit energy production. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citation21
dc.identifier.doi10.1016/j.enconman.2011.12.031
dc.identifier.endpage50en_US
dc.identifier.issn0196-8904
dc.identifier.issn1879-2227
dc.identifier.scopus2-s2.0-84867005928
dc.identifier.startpage44en_US
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2011.12.031
dc.identifier.urihttps://hdl.handle.net/20.500.14411/362
dc.identifier.volume63en_US
dc.identifier.wosWOS:000309897700008
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherPergamon-elsevier Science Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectInertial fusion energyen_US
dc.subjectTRISO fuelen_US
dc.subjectFLIBE molten salten_US
dc.subjectNational ignition facilityen_US
dc.subjectReactor-grade plutoniumen_US
dc.subjectFusion-fission (hybrid) reactorsen_US
dc.titleLIFE hybrid reactor as reactor grade plutonium burneren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication565a82c2-51d6-4b83-98c0-f1bcbae75db9
relation.isAuthorOfPublication.latestForDiscovery565a82c2-51d6-4b83-98c0-f1bcbae75db9
relation.isOrgUnitOfPublicationf77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication.latestForDiscoveryf77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections