Avuç içi tanımlaması

dc.contributor.advisorTora, Hakan
dc.contributor.authorJebrıel, Belal Alı Mesbah
dc.contributor.otherAirframe and Powerplant Maintenance
dc.date.accessioned2024-07-07T12:50:23Z
dc.date.available2024-07-07T12:50:23Z
dc.date.issued2018
dc.departmentFen Bilimleri Enstitüsü / Elektrik-Elektronik Mühendisliği Ana Bilim Dalı
dc.description.abstractBu tez, standart bir veritabanı ve bir temizleyici aracılığıyla avuç izi tanımlanmasının uygunluğunu araştırmaktadır. Bu çalışma, sol el ve sağ el görüntüleri içeren veritabanları CASIA ve IIT için iki öznitelik kümesi kullanmaktadır. Yerel ikili örüntü (YİÖ) ve yönlü gradyan histogram (YGH) öznitelikleri, MATLAB tarafından görüntülerden elde edilmiştir. Eğitim ve test setleri bu özelliklerden oluşturuldu. Çok katmanlı katmanlı bir sinir ağı ve lineer ve kuadratik kernel kullanan destek vektör makineleri (DVM), seçilen veritabanlarında eğitilmiş ve test edilmiştir. Seçilen özellikler deneysel olarak birbirleriyle karşılaştırılmıştır. Her iki sınıflandırıcı için YGH'de daha iyi sonuçlar elde edilmiştir. Ayrıca, sınıflandırıcıların performansı da değerlendirilmiştir. Sinir ağın, her iki veri setinin YİÖ öznitelikleri için SVM'den daha iyi sonuçlar verdiği gözlenmiştir. Ancak, YGH özellikleri için birbirlerine göre çok fazla avantajları yoktur. Anahtar Kelimeler: Avuç izi tanımlama, yerel ikili örüntü (YİÖ), yönlü gradyan histogramı (YGH), sinir ağları, destek vektör makinesi (DVM).
dc.description.abstractThis thesis explores the appropriateness of identifying palm prints through a standard database and a classifier. This study uses two sets of databases, CASIA and IIT, which contain left hand and right hand images. The features of the local binary pattern (LBP) and histogram of oriented gradients (HOG) are extracted from the images by MATLAB. Training and testing sets are created from these features. A multilayer neural network and support vector machines (SVM) with two separate kernels, linear and quadratic, are trained and tested on the selected databases. The chosen features are empirically compared with one another. Better results have been accomplished in HOG for both classifiers. In addition, the performance of the classifiers are evaluated. It has been observed that the neural network achieves better results than SVM for LBP features of both datasets. On the other hand, for HOG features, they do not display many advantages over one another. Keywords: palm print identification, local binary pattern (LBP), histogram of oriented gradients (HOG), neural networks, support vector machine (SVM).en
dc.identifier.endpage101
dc.identifier.startpage0
dc.identifier.urihttps://hdl.handle.net/20.500.14411/5586
dc.identifier.yoktezid540297
dc.institutionauthorTora, Hakan
dc.language.isoen
dc.subjectElektrik ve Elektronik Mühendisliği
dc.subjectElectrical and Electronics Engineeringen_US
dc.titleAvuç içi tanımlaması
dc.titlePalm print identificationen_US
dc.typeMaster Thesis
dspace.entity.typePublication
relation.isAuthorOfPublication3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isAuthorOfPublication.latestForDiscovery3b369df4-6f40-4e7f-9021-94de8b562a0d
relation.isOrgUnitOfPublication0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5
relation.isOrgUnitOfPublication.latestForDiscovery0ad0b148-c2aa-44e7-8f0a-53ab5c8406d5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
540297 Palm print identification.pdf
Size:
7.97 MB
Format:
Adobe Portable Document Format