On Euler's differential methods for continued fractions
dc.authorid | Khrushchev, Sergey/0000-0002-8854-5317 | |
dc.authorscopusid | 7004133014 | |
dc.authorwosid | Khrushchev, Sergey/AAH-8676-2019 | |
dc.contributor.author | Khrushchev, Sergey | |
dc.contributor.other | Mathematics | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-10-06T10:57:32Z | |
dc.date.available | 2024-10-06T10:57:32Z | |
dc.date.issued | 2006 | |
dc.department | Atılım University | en_US |
dc.department-temp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
dc.description | Khrushchev, Sergey/0000-0002-8854-5317 | en_US |
dc.description.abstract | A differential method discovered by Euler is justified and applied to give simple proofs to formulas relating important continued fractions with Laplace transforms. They include Stieltjes formulas and some Ramanujan formulas. A representation for the remainder of Leibniz's series as a continued fraction is given. We also recover the original Euler's proof for the continued fraction of hyperbolic cotangent. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded - Conference Proceedings Citation Index - Science | |
dc.identifier.citationcount | 1 | |
dc.identifier.endpage | 200 | en_US |
dc.identifier.issn | 1068-9613 | |
dc.identifier.scopus | 2-s2.0-33846993356 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.startpage | 178 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/8739 | |
dc.identifier.volume | 25 | en_US |
dc.identifier.wos | WOS:000247030900015 | |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Khrushchev, Sergey | |
dc.institutionauthor | Khrushchev, Sergey | |
dc.language.iso | en | en_US |
dc.publisher | Kent State University | en_US |
dc.relation.ispartof | Conference on Constructive Functions Tech-04 in honor of Edward B Saff -- NOV 07-09, 2004 -- Georgia Inst Technol, Atlanta, GA | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 0 | |
dc.subject | continued fractions | en_US |
dc.subject | Ramanujan formulas | en_US |
dc.subject | Laplace transform | en_US |
dc.title | On Euler's differential methods for continued fractions | en_US |
dc.type | Conference Object | en_US |
dc.wos.citedbyCount | 1 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 96955c8f-cdd9-434b-80b5-0e40e6fa87f7 | |
relation.isAuthorOfPublication.latestForDiscovery | 96955c8f-cdd9-434b-80b5-0e40e6fa87f7 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |