The Convergence of <i>q</I>-bernstein Polynomials (0 < <i>q</I> < 1) in the Complex Plane
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.contributor.other | Mathematics | |
| dc.contributor.other | 02. School of Arts and Sciences | |
| dc.contributor.other | 01. Atılım University | |
| dc.date.accessioned | 2024-07-05T14:33:56Z | |
| dc.date.available | 2024-07-05T14:33:56Z | |
| dc.date.issued | 2009 | |
| dc.description.abstract | The paper focuses at the estimates for the rate of convergence of the q-Bernstein polynomials (0 < q < 1) in the complex plane. In particular, a generalization of previously known results on the possibility of analytic continuation of the limit function and an elaboration of the theorem by Wang and Meng is presented. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim | en_US |
| dc.identifier.doi | 10.1002/mana.200610735 | |
| dc.identifier.issn | 0025-584X | |
| dc.identifier.issn | 1522-2616 | |
| dc.identifier.scopus | 2-s2.0-60549106684 | |
| dc.identifier.uri | https://doi.org/10.1002/mana.200610735 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/994 | |
| dc.language.iso | en | en_US |
| dc.publisher | Wiley-v C H verlag Gmbh | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | rate of convergence | en_US |
| dc.subject | Lipschitz continuous functions | en_US |
| dc.subject | modulus of continuity | en_US |
| dc.subject | analytic continuation | en_US |
| dc.title | The Convergence of <i>q</I>-bernstein Polynomials (0 < <i>q</I> < 1) in the Complex Plane | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ostrovska, Sofiya | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | Atilim Univ, Dept Math, TR-06836 Ankara, Turkey | en_US |
| gdc.description.endpage | 252 | en_US |
| gdc.description.issue | 2 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q2 | |
| gdc.description.startpage | 243 | en_US |
| gdc.description.volume | 282 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W1982032200 | |
| gdc.identifier.wos | WOS:000264747100007 | |
| gdc.openalex.fwci | 1.106 | |
| gdc.openalex.normalizedpercentile | 0.74 | |
| gdc.opencitations.count | 9 | |
| gdc.plumx.crossrefcites | 9 | |
| gdc.plumx.scopuscites | 12 | |
| gdc.scopus.citedcount | 12 | |
| gdc.wos.citedcount | 10 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |