The Distance Between Two Limit <i>q</I>-bernstein Operators

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Turan, Mehmet
dc.contributor.other Mathematics
dc.contributor.other 02. School of Arts and Sciences
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:30:29Z
dc.date.available 2024-07-05T15:30:29Z
dc.date.issued 2020
dc.description.abstract For q is an element of (0, 1), let B-q denote the limit q-Bernstein operator. The distance between B-q and B-r for distinct q and r in the operator norm on C[0, 1] is estimated, and it is proved that 1 <= parallel to B-q - B-r parallel to <= 2, where both of the equalities can be attained. Furthermore, the distance depends on whether or not r and q are rational powers of each other. For example, if r(j) not equal q(m) for all j, m is an element of N, then parallel to B-q - B-r parallel to = 2, and if r = q(m) for some m is an element of N, then parallel to B-q - B-r parallel to = 2(m - 1)/m. en_US
dc.identifier.doi 10.1216/rmj.2020.50.1085
dc.identifier.issn 0035-7596
dc.identifier.issn 1945-3795
dc.identifier.scopus 2-s2.0-85091883204
dc.identifier.uri https://doi.org/10.1216/rmj.2020.50.1085
dc.identifier.uri https://hdl.handle.net/20.500.14411/3045
dc.language.iso en en_US
dc.publisher Rocky Mt Math Consortium en_US
dc.relation.ispartof Rocky Mountain Journal of Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject limit q-Bernstein operator en_US
dc.subject Peano kernel en_US
dc.subject positive linear operators en_US
dc.title The Distance Between Two Limit <i>q</I>-bernstein Operators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Turan, Mehmet
gdc.author.institutional Ostrovska, Sofiya
gdc.author.scopusid 35610828900
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.endpage 1096 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1085 en_US
gdc.description.volume 50 en_US
gdc.description.wosquality Q3
gdc.identifier.openalex W3045940094
gdc.identifier.wos WOS:000557770100021
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.64187E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Mathematics - Functional Analysis
gdc.oaire.keywords limit q-Bernstein operator
gdc.oaire.keywords 47A30
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords 47A30, 47B30, 41A36
gdc.oaire.keywords Peano kernel
gdc.oaire.keywords 41A36
gdc.oaire.keywords positive linear operators
gdc.oaire.keywords Functional Analysis (math.FA)
gdc.oaire.popularity 2.246592E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.309
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.wos.citedcount 1
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections