The Distance Between Two Limit <i>q</I>-bernstein Operators

dc.contributor.author Ostrovska, Sofiya
dc.contributor.author Turan, Mehmet
dc.date.accessioned 2024-07-05T15:30:29Z
dc.date.available 2024-07-05T15:30:29Z
dc.date.issued 2020
dc.description.abstract For q is an element of (0, 1), let B-q denote the limit q-Bernstein operator. The distance between B-q and B-r for distinct q and r in the operator norm on C[0, 1] is estimated, and it is proved that 1 <= parallel to B-q - B-r parallel to <= 2, where both of the equalities can be attained. Furthermore, the distance depends on whether or not r and q are rational powers of each other. For example, if r(j) not equal q(m) for all j, m is an element of N, then parallel to B-q - B-r parallel to = 2, and if r = q(m) for some m is an element of N, then parallel to B-q - B-r parallel to = 2(m - 1)/m. en_US
dc.identifier.doi 10.1216/rmj.2020.50.1085
dc.identifier.issn 0035-7596
dc.identifier.issn 1945-3795
dc.identifier.scopus 2-s2.0-85091883204
dc.identifier.uri https://doi.org/10.1216/rmj.2020.50.1085
dc.identifier.uri https://hdl.handle.net/20.500.14411/3045
dc.language.iso en en_US
dc.publisher Rocky Mt Math Consortium en_US
dc.relation.ispartof Rocky Mountain Journal of Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject limit q-Bernstein operator en_US
dc.subject Peano kernel en_US
dc.subject positive linear operators en_US
dc.title The Distance Between Two Limit <i>q</I>-bernstein Operators en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 35610828900
gdc.author.scopusid 35782583700
gdc.author.wosid Turan, Mehmet/JYQ-4459-2024
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya; Turan, Mehmet] Atilim Univ, Dept Math, Ankara, Turkey en_US
gdc.description.endpage 1096 en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1085 en_US
gdc.description.volume 50 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2749930782
gdc.identifier.wos WOS:000557770100021
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.5925355E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Mathematics - Functional Analysis
gdc.oaire.keywords limit q-Bernstein operator
gdc.oaire.keywords 47A30
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords 47A30, 47B30, 41A36
gdc.oaire.keywords Peano kernel
gdc.oaire.keywords 41A36
gdc.oaire.keywords positive linear operators
gdc.oaire.keywords Functional Analysis (math.FA)
gdc.oaire.keywords Linear operator approximation theory
gdc.oaire.keywords Approximation by positive operators
gdc.oaire.keywords Norms (inequalities, more than one norm, etc.) of linear operators
gdc.oaire.keywords limit \(q\)-Bernstein operator
gdc.oaire.popularity 2.1747084E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0101 mathematics
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
gdc.virtual.author Turan, Mehmet
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 1
relation.isAuthorOfPublication 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery 5010d3f8-f1f2-4750-b086-e5b5edacaef7
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections