Anisotropic Transformation Strain and Its Consequences on Distortion during Austenitization

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Soc Testing Materials

Research Projects

Organizational Units

Organizational Unit
Manufacturing Engineering
(2003)
Opened in 2003 with the aim to graduate experts in the field of machine-production, our Department is among the firsts in our country to offer education in English. The Manufacturing Engineering program focuses on the manufacturing technologies that shape materials from raw materials to final products by means of analytical, experimental and numerical modeling methods. First Manufacturing Engineering Program to be engineered by Müdek, our department aims to graduate creative and innovative Manufacturing Engineers that are knowledgeable in the current technology, and are able to use production resources in an effective and sustainable way that never disregards environmental facts. As the first Department to implement the Cooperative Education Program at Atılım University in coordination with institutions from the industry, the Manufacturing Engineering offers a practice-oriented approach in education with its laboratory infrastructure and research opportunities. The curriculum at our department is supported by current engineering software, and catered to creating engineers equipped to meet the needs of the production industry.

Journal Issue

Abstract

The distribution of segregations, which is introduced in the continuous casting process and modified during succeeding manufacturing steps, is considered as an important "distortion potential carrier" for chemically banded steels. This article presents a recently developed mathematical model for integration of the effect of prior forming and cutting operations into heat-treatment simulations by considering "anisotropic transformation strain (ATS)." The model was justified experimentally by simulating the heating and austenitization of dilatometer specimens machined from the forged discs with distinct orientations with respect to the banded microstructure. After the verification, it is used in conjunction with former experimental work to demonstrate that the distribution of fiber flow is one of the important reasons of the dishing of carburized discs. The model provides promising results for process chain simulation to predict the heat-treatment distortion that cannot be predicted with currently available models.

Description

Simsir, Caner/0009-0006-7871-4232; Hunkel, Martin/0000-0003-0547-2552; Zoch, Hans-Werner/0000-0002-4347-4746

Keywords

anisotropic transformation strain, distortion, heat-treatment simulation, process chain simulation, SAE 5120

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Scopus Q

Source

Volume

1

Issue

1

Start Page

End Page

Collections