Yüzeyler üzerindeki kesim-sistemi kompleksinin bağlantılılığı

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

M kompakt, bağlantılı, cins sayısı g>=1 ve n sınır bileşenli yönlendirilebilen veya yönlendirilemeyen bir yüzey olsun. Bu tezde, M yüzeyinin kesim sistemi kompleksinin bağlantılılığını çalışacağız. Daha açık olarak söylersek, üçüncü bölümde, Wajnryb'ın yönlendirilebilen yüzeyin kesim sistemi kompleksinin bağlantılılığını ispat ettiği çalışmasını inceleyeceğiz. Son bölümde ise yönlendirilemeyen bir yüzeyin kesim sistemi kompleksinin bağlantılı olduğunu ispat edeceğiz.
Let M be a compact, connected, orientable or nonorientable surface of genus g >= 1 with n boundary components. In this thesis, we study connectedness of cut-system complex of M. More precisely, in Chapter 3, we study the work of Wajnryb on the connectedness of the cut-system complex of an orientable surface. In the last chapter, we prove that the cut-system complex of a nonorientable surface is connected.

Description

Keywords

Matematik, Mathematics

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

0

End Page

39