On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines

dc.authorid Yalcinkaya, Bengisu/0000-0003-3644-0692
dc.authorid Benzaghta, Mohamed/0000-0002-9927-1649
dc.authorscopusid 57219359056
dc.authorscopusid 57736344000
dc.authorscopusid 57218263407
dc.authorscopusid 7102824862
dc.authorwosid Yalcinkaya, Bengisu/ABD-4291-2020
dc.authorwosid Benzaghta, Mohamed/AAW-6588-2020
dc.contributor.author Coruk, Remziye Busra
dc.contributor.author Gokdogan, Bengisu Yalcinkaya
dc.contributor.author Benzaghta, Mohamed
dc.contributor.author Kara, Ali
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other Department of Electrical & Electronics Engineering
dc.date.accessioned 2024-07-05T15:17:48Z
dc.date.available 2024-07-05T15:17:48Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya] Atilim Univ, Dept Elect & Elect Engn, Ankara, Turkey; [Benzaghta, Mohamed] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, Ankara, Turkey en_US
dc.description Yalcinkaya, Bengisu/0000-0003-3644-0692; Benzaghta, Mohamed/0000-0002-9927-1649 en_US
dc.description.abstract The recognition of modulation schemes in military and civilian applications is a major task for intelligent receiving systems. Various Automatic Modulation Classification (AMC) algorithms have been developed for this purpose in the literature. However, classification with low computational complexity as well as reasonable processing time is still a challenge. In this paper, a feature-based approach along with various classifiers is employed based on statistical features as well as higher-order moments and cumulants. An over-the-air (OTA) recorded dataset consisting of four analog and ten digital modulation schemes are used for testing the proposed method at 0-20 dB SNR. The overall accuracy for quadratic Support Vector Machine (SVM) is found to be as high as 98% at 10 dB. The comparison of the results with other AMC papers published in the literature indicates that the proposed method present higher accuracy, especially for realistic channel induced OTA dataset. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/s11277-022-09795-8
dc.identifier.endpage 1381 en_US
dc.identifier.issn 0929-6212
dc.identifier.issn 1572-834X
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85131730849
dc.identifier.startpage 1363 en_US
dc.identifier.uri https://doi.org/10.1007/s11277-022-09795-8
dc.identifier.uri https://hdl.handle.net/20.500.14411/1795
dc.identifier.volume 126 en_US
dc.identifier.wos WOS:000810225700001
dc.identifier.wosquality Q3
dc.institutionauthor Gökdoğan, Bengisu Yalçınkaya
dc.institutionauthor Çoruk, Remziye Büşra
dc.institutionauthor Kara, Ali
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 5
dc.subject Modulation classification en_US
dc.subject Feature extraction en_US
dc.subject Support vector machines en_US
dc.subject Analog modulation en_US
dc.subject Digital modulation en_US
dc.title On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 51b235b3-681b-44c7-89a8-f385d0faf933
relation.isAuthorOfPublication bc2ed12f-c409-47e7-adb9-96c8e81aad46
relation.isAuthorOfPublication be728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery 51b235b3-681b-44c7-89a8-f385d0faf933
relation.isOrgUnitOfPublication 032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublication c3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery 032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections