On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines

dc.authoridYalcinkaya, Bengisu/0000-0003-3644-0692
dc.authoridBenzaghta, Mohamed/0000-0002-9927-1649
dc.authorscopusid57219359056
dc.authorscopusid57736344000
dc.authorscopusid57218263407
dc.authorscopusid7102824862
dc.authorwosidYalcinkaya, Bengisu/ABD-4291-2020
dc.authorwosidBenzaghta, Mohamed/AAW-6588-2020
dc.contributor.authorCoruk, Remziye Busra
dc.contributor.authorGokdogan, Bengisu Yalcinkaya
dc.contributor.authorBenzaghta, Mohamed
dc.contributor.authorKara, Ali
dc.contributor.otherElectrical-Electronics Engineering
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:17:48Z
dc.date.available2024-07-05T15:17:48Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya] Atilim Univ, Dept Elect & Elect Engn, Ankara, Turkey; [Benzaghta, Mohamed] Univ Pompeu Fabra, Dept Informat & Commun Technol, Barcelona, Spain; [Kara, Ali] Gazi Univ, Dept Elect & Elect Engn, Ankara, Turkeyen_US
dc.descriptionYalcinkaya, Bengisu/0000-0003-3644-0692; Benzaghta, Mohamed/0000-0002-9927-1649en_US
dc.description.abstractThe recognition of modulation schemes in military and civilian applications is a major task for intelligent receiving systems. Various Automatic Modulation Classification (AMC) algorithms have been developed for this purpose in the literature. However, classification with low computational complexity as well as reasonable processing time is still a challenge. In this paper, a feature-based approach along with various classifiers is employed based on statistical features as well as higher-order moments and cumulants. An over-the-air (OTA) recorded dataset consisting of four analog and ten digital modulation schemes are used for testing the proposed method at 0-20 dB SNR. The overall accuracy for quadratic Support Vector Machine (SVM) is found to be as high as 98% at 10 dB. The comparison of the results with other AMC papers published in the literature indicates that the proposed method present higher accuracy, especially for realistic channel induced OTA dataset.en_US
dc.identifier.citation1
dc.identifier.doi10.1007/s11277-022-09795-8
dc.identifier.endpage1381en_US
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85131730849
dc.identifier.startpage1363en_US
dc.identifier.urihttps://doi.org/10.1007/s11277-022-09795-8
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1795
dc.identifier.volume126en_US
dc.identifier.wosWOS:000810225700001
dc.identifier.wosqualityQ3
dc.institutionauthorGökdoğan, Bengisu Yalçınkaya
dc.institutionauthorÇoruk, Remziye Büşra
dc.institutionauthorKara, Ali
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectModulation classificationen_US
dc.subjectFeature extractionen_US
dc.subjectSupport vector machinesen_US
dc.subjectAnalog modulationen_US
dc.subjectDigital modulationen_US
dc.titleOn the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machinesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication51b235b3-681b-44c7-89a8-f385d0faf933
relation.isAuthorOfPublicationbc2ed12f-c409-47e7-adb9-96c8e81aad46
relation.isAuthorOfPublicationbe728837-c599-49c1-8e8d-81b90219bb15
relation.isAuthorOfPublication.latestForDiscovery51b235b3-681b-44c7-89a8-f385d0faf933
relation.isOrgUnitOfPublication032f8aca-54a7-476c-b399-6f26feb20a7d
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscovery032f8aca-54a7-476c-b399-6f26feb20a7d

Files

Collections