Assessment of a Multi-State System Under a Shock Model

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

A system is subject to random shocks over time. Let c(1) and c(2) be two critical levels such that c(1) < c(2). A shock with a magnitude between c(1) and c(2) has a partial damage on the system, and the system transits into a lower partially working state upon the occurrence of each shock in (c(1), c(2)). A shock with a magnitude above c(2) has a catastrophic affect on the system and it causes a complete failure. Such a shock model creates a multi-state system having random number of states. The lifetime, the time spent by the system in a perfect functioning state, and the total time spent by the system in partially working states are defined and their survival functions are derived when the interarrival times between successive shocks follow phasetype distribution. (C) 2015 Elsevier Inc. All rights reserved.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Shock model, Phase-type distribution, Multi-state system, Mean residual life

Turkish CoHE Thesis Center URL

Fields of Science

Citation

48

WoS Q

Q1

Scopus Q

Source

Volume

269

Issue

Start Page

1

End Page

8

Collections