A Feasibility Study for Controlling Self-Organized Production of Plasmonic Enhancement Interfaces for Solar Cells

No Thumbnail Available

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Physics Group
Atılım University Physics Division was established with the purpose of educating the first-year students of the Engineering and other Departments by providing the general physics courses and, in addition, to make scientific and technological researches at the universal level. Now adays, Physics Division provide the students of Engineering, School of Aviation and Mathematics Departments with the general physics lectures having international education quality. We have in the Group the facilities of the mechanics and electricity laboratories, where the students have the opportunity to realize the practice of the theoretical knowledge in physics. Beside the compulsory courses (General Physics I and General Physics II) there are also elective courses offered by the Group. The faculty members in the Group, whose research interests and fields are given in web-page of the Group in details, perform theoretical as well as experimental researches and make publications in SSC-index journals. Graduate program, with master of sciences and doctorate degree courses and theses, is offered in different scientific areas (for details, see the web-page of the Division). In the Physcis Division there are 6 faculty members, five research assistants, and one technician.

Journal Issue

Events

Abstract

The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shift of plasmon resonance peak position. It is found that surface roughness, annealing time, annealing temperature, and varying Si3N4 thickness can be used as mechanisms to control the size distribution, shape of the resultant nano-islands, and SC efficiency. The findings on the most suitable nanoparticle system production parameters by this method, depends on the applied substrate properties which are expected to guide further applications of plasmonic interfaces and also to the other kinds of device structures in the ultimate quest for attaining affordable high efficiency SCs. (C) 2013 Elsevier B.V. All rights reserved.

Description

Bek, Alpan/0000-0002-0190-7945; Gunoven, Mete/0000-0001-5151-9556; Zolfaghari Borra, Mona/0000-0003-2276-3490

Keywords

Plasmonics, Solar cells, Dewetting, Silver nanoparticles

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

9th Nanoscience and Nanotechnology Conference (NANOTR) -- JUN 24-28, 2013 -- Erzurum, TURKEY

Volume

318

Issue

Start Page

43

End Page

50

Collections