Automated Selection of Optimal Material for Pressurized Multi-Layer Composite Tubes Based on an Evolutionary Approach

dc.contributor.author Azad, Saeid Kazemzadeh
dc.contributor.author Akis, Tolga
dc.contributor.other Civil Engineering
dc.contributor.other Department of Civil Engineering
dc.contributor.other 15. Graduate School of Natural and Applied Sciences
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:27:29Z
dc.date.available 2024-07-05T15:27:29Z
dc.date.issued 2018
dc.description Akis, Tolga/0000-0002-6754-4497; Kazemzadeh Azad, Saeid/0000-0001-9309-607X en_US
dc.description.abstract Decision making on the configuration of material layers as well as thickness of each layer in composite assemblies has long been recognized as an optimization problem. Today, on the one hand, abundance of industrial alloys with different material properties and costs facilitates fabrication of more economical or light weight assemblies. On the other hand, in the design stage, availability of different alternative materials apparently increases the complexity of the design optimization problem and arises the need for efficient optimization techniques. In the present study, the well-known big bang-big crunch optimization algorithm is reformulated for optimum design of internally pressurized tightly fitted multi-layer composite tubes with axially constrained ends. An automated material selection and thickness optimization approach is employed for both weight and cost minimization of one-, two-, and three-layer tubes, and the obtained results are compared. The numerical results indicate the efficiency of the proposed approach in practical optimum design of multi-layer composite tubes under internal pressure and quantify the optimality of different composite assemblies compared to one-layer tubes. en_US
dc.identifier.doi 10.1007/s00521-016-2563-6
dc.identifier.issn 0941-0643
dc.identifier.issn 1433-3058
dc.identifier.scopus 2-s2.0-84983560221
dc.identifier.uri https://doi.org/10.1007/s00521-016-2563-6
dc.identifier.uri https://hdl.handle.net/20.500.14411/2672
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Neural Computing and Applications
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Metaheuristics en_US
dc.subject Composite assembly en_US
dc.subject Evolutionary algorithm en_US
dc.subject Multi-layer composite tubes en_US
dc.subject Big bang-big crunch algorithm en_US
dc.subject Design optimization en_US
dc.title Automated Selection of Optimal Material for Pressurized Multi-Layer Composite Tubes Based on an Evolutionary Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Akis, Tolga/0000-0002-6754-4497
gdc.author.id Kazemzadeh Azad, Saeid/0000-0001-9309-607X
gdc.author.institutional Akış, Tolga
gdc.author.institutional Azad, Saeıd Kazemzadeh
gdc.author.scopusid 57193753354
gdc.author.scopusid 55144319800
gdc.author.wosid Akis, Tolga/P-6181-2014
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Azad, Saeid Kazemzadeh; Akis, Tolga] Atilim Univ, Dept Civil Engn, Ankara, Turkey en_US
gdc.description.endpage 416 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 405 en_US
gdc.description.volume 29 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W2511417257
gdc.identifier.wos WOS:000427799400009
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.2222383E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 5.0290976E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0201 civil engineering
gdc.openalex.fwci 1.433
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 13
gdc.plumx.crossrefcites 3
gdc.plumx.mendeley 12
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.wos.citedcount 11
relation.isAuthorOfPublication c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isAuthorOfPublication a5085afb-eacf-4eb1-b19d-be25e73bcd43
relation.isAuthorOfPublication.latestForDiscovery c5c8784e-c129-499c-8a15-85aa6cf5ce96
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 238c4130-e9ea-4b1c-9dea-772c4a0dad39
relation.isOrgUnitOfPublication dff2e5a6-d02d-4bef-8b9e-efebe3919b10
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections