Design and Electrical Performance of Cds/Sb<sub>2< Tunneling Heterojunction Devices

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Iop Publishing Ltd

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In the current work, a tunneling barrier device made of 20 nm thick Sb2Te3 layer deposited onto 500 nm thick CdS is designed and characterized. The design included a Yb metallic substrate and Ag point contact of area of 10(-3) cm(2). The heterojunction properties are investigated by means of x-ray diffraction and impedance spectroscopy techniques. It is observed that the coating of the Sb2Te3 onto the surface of CdS causes a further deformation to the already strained structure of hexagonal CdS. The designed energy band diagram for the CdS/Sb2Te3 suggests a straddling type of heterojunction with an estimated conduction and valence band offsets of 0.35 and 1.74 eV, respectively. In addition, the analysis of the capacitance-voltage characteristic curve revealed a depletion region width of 14 nm. On the other hand, the capacitance and conductivity spectra which are analyzed in the frequency domain of 0.001-1.80 GHz indicated that the conduction in the device is dominated by the quantum mechanical tunneling in the region below 0.26 GHz and by the correlated barrier hopping in the remaining region. While the modeling of the conductivity spectra allowed investigation of the density of states near Fermi levels and an average scattering time of 1.0 ns, the capacitance spectra exhibited resonance at 0.26 GHz followed by negative differential capacitance effect in the frequency domain of 0.26-1.8 GHz. Furthermore, the evaluation of the impedance and reflection coefficient spectra indicated the usability of these devices as wide range low pass filters with ideal values of voltage standing wave ratios.

Description

Khanfar, Hazem k./0000-0002-3015-4049; Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

straddling barrier, Sb2Te3, impedance

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q3

Scopus Q

Q3
OpenCitations Logo
OpenCitations Citation Count
37

Source

Materials Research Express

Volume

5

Issue

2

Start Page

026303

End Page

Collections

PlumX Metrics
Citations

CrossRef : 13

Scopus : 42

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
2.9460569

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

15

LIFE ON LAND
LIFE ON LAND Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo