Improved parallel preconditioners for multidisciplinary topology optimisations

dc.authoridAkay, Hasan U/0000-0003-2574-9942
dc.authoridSivas, Abdullah Ali/0000-0002-5263-1889
dc.authorscopusid24532717000
dc.authorscopusid6701403522
dc.authorscopusid23994437100
dc.authorscopusid57190301046
dc.authorwosidAkay, Hasan U/ABI-3992-2020
dc.authorwosidManguoglu, Murat/ABB-6236-2020
dc.authorwosidSivas, Abdullah Ali/ABD-7944-2020
dc.contributor.authorAkay, H. U.
dc.contributor.authorOktay, E.
dc.contributor.authorManguoglu, M.
dc.contributor.authorSivas, A. A.
dc.contributor.otherAutomotive Engineering
dc.date.accessioned2024-07-05T14:29:36Z
dc.date.available2024-07-05T14:29:36Z
dc.date.issued2016
dc.departmentAtılım Universityen_US
dc.department-temp[Akay, H. U.] Atilim Univ, Dept Mech Engn, Ankara, Turkey; [Oktay, E.] EDA Engn Design & Anal Ltd Co, ODTU Teknokent, Ankara, Turkey; [Manguoglu, M.] Middle East Tech Univ, Dept Comp Engn, Ankara, Turkey; [Manguoglu, M.; Sivas, A. A.] Middle East Tech Univ, Inst Appl Math, Ankara, Turkeyen_US
dc.descriptionAkay, Hasan U/0000-0003-2574-9942; Sivas, Abdullah Ali/0000-0002-5263-1889en_US
dc.description.abstractTwo commonly used preconditioners were evaluated for parallel solution of linear systems of equations with high condition numbers. The test cases were derived from topology optimisation applications in multiple disciplines, where the material distribution finite element methods were used. Because in this optimisation method, the equations rapidly become ill-conditioned due to disappearance of large number of elements from the design space as the optimisations progresses, it is shown that the choice for a suitable preconditioner becomes very crucial. In an earlier work the conjugate gradient (CG) method with a Block-Jacobi preconditioner was used, in which the number of CG iterations increased rapidly with the increasing number processors. Consequently, the parallel scalability of the method deteriorated fast due to the increasing loss of interprocessor information among the increased number of processors. By replacing the Block-Jacobi preconditioner with a sparse approximate inverse preconditioner, it is shown that the number of iterations to converge became independent of the number of processors. Therefore, the parallel scalability is improved.en_US
dc.description.sponsorshipTurkish Academy of Sciences [TUBA-GEBIP/2012-19]; Scientific and Technological Research Council of Turkey [EDA/TUBITAK-TEYDEB/3120299]en_US
dc.description.sponsorshipThis work was partially supported by The Turkish Academy of Sciences for a Distinguished Young Scientist Award [grant number M.M./TUBA-GEBIP/2012-19] and The Scientific and Technological Research Council of Turkey [grant number EDA/TUBITAK-TEYDEB/3120299].en_US
dc.identifier.citation0
dc.identifier.doi10.1080/10618562.2016.1205737
dc.identifier.endpage336en_US
dc.identifier.issn1061-8562
dc.identifier.issn1029-0257
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-84979030191
dc.identifier.scopusqualityQ3
dc.identifier.startpage329en_US
dc.identifier.urihttps://doi.org/10.1080/10618562.2016.1205737
dc.identifier.urihttps://hdl.handle.net/20.500.14411/538
dc.identifier.volume30en_US
dc.identifier.wosWOS:000382939400003
dc.identifier.wosqualityQ4
dc.institutionauthorAkay, Hasan Umur
dc.language.isoenen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTopology optimisationen_US
dc.subjectparallel methodsen_US
dc.subjectparallel scalabilityen_US
dc.subjectiterative solversen_US
dc.subjectpreconditionersen_US
dc.subjectconjugate gradienten_US
dc.subjectBlock-Jacobien_US
dc.subjectsparse approximate inverseen_US
dc.titleImproved parallel preconditioners for multidisciplinary topology optimisationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication94f6c6fc-365d-4875-b446-2ad82c1cc745
relation.isAuthorOfPublication.latestForDiscovery94f6c6fc-365d-4875-b446-2ad82c1cc745
relation.isOrgUnitOfPublication7d024e9b-1f00-4f1d-a95a-f448a474eea9
relation.isOrgUnitOfPublication.latestForDiscovery7d024e9b-1f00-4f1d-a95a-f448a474eea9

Files

Collections