Multisymplectic Integration of <i>n</I>-coupled Nonlinear Schrodinger Equation With Destabilized Periodic Wave Solutions

dc.contributor.author Aydin, Ayhan
dc.date.accessioned 2024-07-05T15:11:49Z
dc.date.available 2024-07-05T15:11:49Z
dc.date.issued 2009
dc.description.abstract N-coupled nonlinear Schrodinger equation (N-CNLS) is shown to be in multisymplectic form. 3-CNLS equation is studied for analytical and numerical purposes. A new six-point scheme which is equivalent to the multisymplectic Preissman scheme is derived for 3-CNLS equation. A new periodic wave solution is obtained and its stability analysis is discussed. 3-CNLS equation is integrated for destabilized periodic solutions both for integrable and non-integrable cases by multisymplectic six-point scheme. Different kinds of evolutions are observed for different parameters and coefficients of the system. Numerical results show that, the multisymplectic six-point scheme has excellent local and global conservation properties in long-time computation. (C) 2008 Elsevier Ltd. All rights reserved. en_US
dc.identifier.doi 10.1016/j.chaos.2008.03.011
dc.identifier.issn 0960-0779
dc.identifier.issn 1873-2887
dc.identifier.scopus 2-s2.0-67349109102
dc.identifier.uri https://doi.org/10.1016/j.chaos.2008.03.011
dc.identifier.uri https://hdl.handle.net/20.500.14411/1499
dc.language.iso en en_US
dc.publisher Pergamon-elsevier Science Ltd en_US
dc.relation.ispartof Chaos, Solitons &amp; Fractals
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Multisymplectic Integration of <i>n</I>-coupled Nonlinear Schrodinger Equation With Destabilized Periodic Wave Solutions en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 20435628400
gdc.author.wosid Aydin, Ayhan/AAL-5690-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Atilim Univ, Dept Math, TR-06836 Ankara, Turkey en_US
gdc.description.endpage 751 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 735 en_US
gdc.description.volume 41 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2077574028
gdc.identifier.wos WOS:000267379700021
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 4.22321E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
gdc.oaire.keywords NLS equations (nonlinear Schrödinger equations)
gdc.oaire.keywords Finite difference methods for initial value and initial-boundary value problems involving PDEs
gdc.oaire.popularity 9.109138E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.93262717
gdc.openalex.normalizedpercentile 0.77
gdc.opencitations.count 22
gdc.plumx.crossrefcites 13
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 25
gdc.scopus.citedcount 25
gdc.virtual.author Aydın, Ayhan
gdc.wos.citedcount 23
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections