Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study

dc.authoridKoyuncu, Murat/0000-0003-1958-5945
dc.authoridFernandez-Sanz, Luis/0000-0003-0778-0073
dc.authoridMisra, Sanjay/0000-0002-3556-9331
dc.authoridBarik, Kousik/0000-0001-9296-9561
dc.authorscopusid57422516600
dc.authorscopusid56962766700
dc.authorscopusid57421932500
dc.authorscopusid25630384100
dc.authorscopusid7004305370
dc.authorwosidBarik, Kousik/KGL-8688-2024
dc.authorwosidKoyuncu, Murat/C-9407-2017
dc.authorwosidFernandez-Sanz, Luis/J-4895-2012
dc.authorwosidMisra, Sanjay/K-2203-2014
dc.authorwosidFernandez, Luis/KHX-5442-2024
dc.contributor.authorBarik, Kousik
dc.contributor.authorMisra, Sanjay
dc.contributor.authorKonar, Karabi
dc.contributor.authorFernandez-Sanz, Luis
dc.contributor.authorMurat, Koyuncu
dc.contributor.otherInformation Systems Engineering
dc.contributor.otherComputer Engineering
dc.date.accessioned2024-07-05T15:18:33Z
dc.date.available2024-07-05T15:18:33Z
dc.date.issued2022
dc.departmentAtılım Universityen_US
dc.department-temp[Barik, Kousik; Fernandez-Sanz, Luis] Univ Alcala, Dept Comp Sci, Madrid, Spain; [Misra, Sanjay] Ostfold Univ Coll, Dept Comp Sci & Commun, Halden, Norway; [Konar, Karabi] JIS Univ, JIS Inst Adv Studies & Res, Kolkata, India; [Murat, Koyuncu] Atilim Univ, Dept Comp Engn, Ankara, Turkeyen_US
dc.descriptionKoyuncu, Murat/0000-0003-1958-5945; Fernandez-Sanz, Luis/0000-0003-0778-0073; Misra, Sanjay/0000-0002-3556-9331; Barik, Kousik/0000-0001-9296-9561en_US
dc.description.abstractCyber attacks are increasing rapidly due to advanced digital technologies used by hackers. In addition, cybercriminals are conducting cyber attacks, making cyber security a rapidly growing field. Although machine learning techniques worked well in solving large-scale cybersecurity problems, an emerging concept of deep learning (DL) that caught on during this period caused information security specialists to improvise the result. The deep learning techniques analyzed in this study are convolution neural networks, recurrent neural networks, and deep neural networks in the context of cybersecurity.A framework is proposed, and a real-time laboratory setup is performed to capture network packets and examine this captured data using various DL techniques. A comparable interpretation is presented under the DL techniques with essential parameters, particularly accuracy, false alarm rate, precision, and detection rate. The DL techniques experimental output projects improvise the performance of various real-time cybersecurity applications on a real-time dataset. CNN model provides the highest accuracy of 98.64% with a precision of 98% with binary class. The RNN model offers the second-highest accuracy of 97.75%. CNN model provides the highest accuracy of 98.42 with multiclass class. The study shows that DL techniques can be effectively used in cybersecurity applications. Future research areas are being elaborated, including the potential research topics to improve several DL methodologies for cybersecurity applications.en_US
dc.identifier.citation5
dc.identifier.doi10.1080/08839514.2022.2055399
dc.identifier.issn0883-9514
dc.identifier.issn1087-6545
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85127243379
dc.identifier.urihttps://doi.org/10.1080/08839514.2022.2055399
dc.identifier.urihttps://hdl.handle.net/20.500.14411/1850
dc.identifier.volume36en_US
dc.identifier.wosWOS:000773163700001
dc.identifier.wosqualityQ2
dc.institutionauthorKoyuncu, Murat
dc.institutionauthorMısra, Sanjay
dc.language.isoenen_US
dc.publisherTaylor & Francis incen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[No Keyword Available]en_US
dc.titleCybersecurity Deep: Approaches, Attacks Dataset, and Comparative Studyen_US
dc.typeReviewen_US
dspace.entity.typePublication
relation.isAuthorOfPublication948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublicationcf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublicatione0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscoverycf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Collections