Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study

dc.authorid Koyuncu, Murat/0000-0003-1958-5945
dc.authorid Fernandez-Sanz, Luis/0000-0003-0778-0073
dc.authorid Misra, Sanjay/0000-0002-3556-9331
dc.authorid Barik, Kousik/0000-0001-9296-9561
dc.authorscopusid 57422516600
dc.authorscopusid 56962766700
dc.authorscopusid 57421932500
dc.authorscopusid 25630384100
dc.authorscopusid 7004305370
dc.authorwosid Barik, Kousik/KGL-8688-2024
dc.authorwosid Koyuncu, Murat/C-9407-2017
dc.authorwosid Fernandez-Sanz, Luis/J-4895-2012
dc.authorwosid Misra, Sanjay/K-2203-2014
dc.authorwosid Fernandez, Luis/KHX-5442-2024
dc.contributor.author Barik, Kousik
dc.contributor.author Misra, Sanjay
dc.contributor.author Konar, Karabi
dc.contributor.author Fernandez-Sanz, Luis
dc.contributor.author Murat, Koyuncu
dc.contributor.other Information Systems Engineering
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:18:33Z
dc.date.available 2024-07-05T15:18:33Z
dc.date.issued 2022
dc.department Atılım University en_US
dc.department-temp [Barik, Kousik; Fernandez-Sanz, Luis] Univ Alcala, Dept Comp Sci, Madrid, Spain; [Misra, Sanjay] Ostfold Univ Coll, Dept Comp Sci & Commun, Halden, Norway; [Konar, Karabi] JIS Univ, JIS Inst Adv Studies & Res, Kolkata, India; [Murat, Koyuncu] Atilim Univ, Dept Comp Engn, Ankara, Turkey en_US
dc.description Koyuncu, Murat/0000-0003-1958-5945; Fernandez-Sanz, Luis/0000-0003-0778-0073; Misra, Sanjay/0000-0002-3556-9331; Barik, Kousik/0000-0001-9296-9561 en_US
dc.description.abstract Cyber attacks are increasing rapidly due to advanced digital technologies used by hackers. In addition, cybercriminals are conducting cyber attacks, making cyber security a rapidly growing field. Although machine learning techniques worked well in solving large-scale cybersecurity problems, an emerging concept of deep learning (DL) that caught on during this period caused information security specialists to improvise the result. The deep learning techniques analyzed in this study are convolution neural networks, recurrent neural networks, and deep neural networks in the context of cybersecurity.A framework is proposed, and a real-time laboratory setup is performed to capture network packets and examine this captured data using various DL techniques. A comparable interpretation is presented under the DL techniques with essential parameters, particularly accuracy, false alarm rate, precision, and detection rate. The DL techniques experimental output projects improvise the performance of various real-time cybersecurity applications on a real-time dataset. CNN model provides the highest accuracy of 98.64% with a precision of 98% with binary class. The RNN model offers the second-highest accuracy of 97.75%. CNN model provides the highest accuracy of 98.42 with multiclass class. The study shows that DL techniques can be effectively used in cybersecurity applications. Future research areas are being elaborated, including the potential research topics to improve several DL methodologies for cybersecurity applications. en_US
dc.identifier.citationcount 5
dc.identifier.doi 10.1080/08839514.2022.2055399
dc.identifier.issn 0883-9514
dc.identifier.issn 1087-6545
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85127243379
dc.identifier.uri https://doi.org/10.1080/08839514.2022.2055399
dc.identifier.uri https://hdl.handle.net/20.500.14411/1850
dc.identifier.volume 36 en_US
dc.identifier.wos WOS:000773163700001
dc.identifier.wosquality Q2
dc.institutionauthor Koyuncu, Murat
dc.institutionauthor Mısra, Sanjay
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.relation.publicationcategory Diğer en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 28
dc.subject [No Keyword Available] en_US
dc.title Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study en_US
dc.type Review en_US
dc.wos.citedbyCount 16
dspace.entity.type Publication
relation.isAuthorOfPublication 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublication cf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery cf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Collections