Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study

dc.contributor.author Barik, Kousik
dc.contributor.author Misra, Sanjay
dc.contributor.author Konar, Karabi
dc.contributor.author Fernandez-Sanz, Luis
dc.contributor.author Murat, Koyuncu
dc.contributor.other Information Systems Engineering
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-07-05T15:18:33Z
dc.date.available 2024-07-05T15:18:33Z
dc.date.issued 2022
dc.description Koyuncu, Murat/0000-0003-1958-5945; Fernandez-Sanz, Luis/0000-0003-0778-0073; Misra, Sanjay/0000-0002-3556-9331; Barik, Kousik/0000-0001-9296-9561 en_US
dc.description.abstract Cyber attacks are increasing rapidly due to advanced digital technologies used by hackers. In addition, cybercriminals are conducting cyber attacks, making cyber security a rapidly growing field. Although machine learning techniques worked well in solving large-scale cybersecurity problems, an emerging concept of deep learning (DL) that caught on during this period caused information security specialists to improvise the result. The deep learning techniques analyzed in this study are convolution neural networks, recurrent neural networks, and deep neural networks in the context of cybersecurity.A framework is proposed, and a real-time laboratory setup is performed to capture network packets and examine this captured data using various DL techniques. A comparable interpretation is presented under the DL techniques with essential parameters, particularly accuracy, false alarm rate, precision, and detection rate. The DL techniques experimental output projects improvise the performance of various real-time cybersecurity applications on a real-time dataset. CNN model provides the highest accuracy of 98.64% with a precision of 98% with binary class. The RNN model offers the second-highest accuracy of 97.75%. CNN model provides the highest accuracy of 98.42 with multiclass class. The study shows that DL techniques can be effectively used in cybersecurity applications. Future research areas are being elaborated, including the potential research topics to improve several DL methodologies for cybersecurity applications. en_US
dc.identifier.doi 10.1080/08839514.2022.2055399
dc.identifier.issn 0883-9514
dc.identifier.issn 1087-6545
dc.identifier.scopus 2-s2.0-85127243379
dc.identifier.uri https://doi.org/10.1080/08839514.2022.2055399
dc.identifier.uri https://hdl.handle.net/20.500.14411/1850
dc.language.iso en en_US
dc.publisher Taylor & Francis inc en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Cybersecurity Deep: Approaches, Attacks Dataset, and Comparative Study en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Koyuncu, Murat/0000-0003-1958-5945
gdc.author.id Fernandez-Sanz, Luis/0000-0003-0778-0073
gdc.author.id Misra, Sanjay/0000-0002-3556-9331
gdc.author.id Barik, Kousik/0000-0001-9296-9561
gdc.author.institutional Koyuncu, Murat
gdc.author.institutional Mısra, Sanjay
gdc.author.scopusid 57422516600
gdc.author.scopusid 56962766700
gdc.author.scopusid 57421932500
gdc.author.scopusid 25630384100
gdc.author.scopusid 7004305370
gdc.author.wosid Barik, Kousik/KGL-8688-2024
gdc.author.wosid Koyuncu, Murat/C-9407-2017
gdc.author.wosid Fernandez-Sanz, Luis/J-4895-2012
gdc.author.wosid Misra, Sanjay/K-2203-2014
gdc.author.wosid Fernandez, Luis/KHX-5442-2024
gdc.coar.access open access
gdc.coar.type text::review
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Barik, Kousik; Fernandez-Sanz, Luis] Univ Alcala, Dept Comp Sci, Madrid, Spain; [Misra, Sanjay] Ostfold Univ Coll, Dept Comp Sci & Commun, Halden, Norway; [Konar, Karabi] JIS Univ, JIS Inst Adv Studies & Res, Kolkata, India; [Murat, Koyuncu] Atilim Univ, Dept Comp Engn, Ankara, Turkey en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.volume 36 en_US
gdc.description.wosquality Q2
gdc.identifier.wos WOS:000773163700001
gdc.scopus.citedcount 30
gdc.wos.citedcount 16
relation.isAuthorOfPublication 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isAuthorOfPublication 53e88841-fdb7-484f-9e08-efa4e6d1a090
relation.isAuthorOfPublication.latestForDiscovery 948643aa-7723-4c65-8da8-fcc884405cd1
relation.isOrgUnitOfPublication cf0fb36c-0500-438e-b4cc-ad1d4ef25579
relation.isOrgUnitOfPublication e0809e2c-77a7-4f04-9cb0-4bccec9395fa
relation.isOrgUnitOfPublication.latestForDiscovery cf0fb36c-0500-438e-b4cc-ad1d4ef25579

Files

Collections