Design of the ZnS/Ge/GaSe <i>pn</i> interfaces as plasmonic, photovoltaic and microwave band stop filters

dc.authoridQasrawi, Atef Fayez/0000-0001-8193-6975
dc.authorscopusid55735276400
dc.authorscopusid6603962677
dc.authorwosidQasrawi, Atef Fayez/R-4409-2019
dc.authorwosidr., alharbi s./E-5175-2013
dc.authorwosidAlharbi, Seham/JFK-4290-2023
dc.contributor.authorQasrawı, Atef Fayez Hasan
dc.contributor.authorQasrawi, A. F.
dc.contributor.otherDepartment of Electrical & Electronics Engineering
dc.date.accessioned2024-07-05T15:29:22Z
dc.date.available2024-07-05T15:29:22Z
dc.date.issued2017
dc.departmentAtılım Universityen_US
dc.department-temp[Alharbi, S. R.] King Abdulaziz Univ, Fac Sci Al Faisaliah, Phys Dept, Jeddah, Saudi Arabia; [Qasrawi, A. F.] AAUJ, Grp Phys, Jenin, Palestine; [Qasrawi, A. F.] Atilim Univ, Fac Engn, TR-06836 Ankara, Turkeyen_US
dc.descriptionQasrawi, Atef Fayez/0000-0001-8193-6975;en_US
dc.description.abstractIn the current work, we report and discuss the features of the design of a ZnS (300 nm)/Ge (300 nm)/GaSe (300 nm) thin film device. The device is characterized by the X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy (EDS), optical spectroscopy, microwave power spectroscopy and light power dependent photoconductivity. While the X-ray diffraction technique revealed a polycrystalline ZnS coated with two amorphous layers of Ge and GaSe, the hot probe tests revealed the formation of pn interface. The optical spectra which were employed to reveal the conduction and valence band offsets at the ZnS/Ge and Ge/GaSe interface indicated information about the dielectric dispersion at the interface. The dielectric spectra of the ZnS/Ge/GaSe heterojunction which was modeled assuming the domination of surface plasmon interactions through the films revealed a pronounced increase in the drift mobility of free carriers in the three layers compared to the single and double layers. In the scope of the fitting parameters, a wave trap that exhibit filtering properties at notch frequency of 2.30 GHz was designed and tested. The ac signals power spectrum absorption reached similar to 99%. In addition, the photocurrent analysis on the ZnS/Ge/GaSe interface has shown it is suitability for photovoltaic and photosensing applications. (C) 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licenseen_US
dc.description.sponsorshipDeanship of Scientific Research (DSR) at King Abdulaziz University, Jaddah [G-97-363-38]; DSRen_US
dc.description.sponsorshipThis project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jaddah, under the grant number G-97-363-38. The authors, therefore, acknowledge with thanks the DSR for technical and financial support.en_US
dc.identifier.citation8
dc.identifier.doi10.1016/j.rinp.2017.11.014
dc.identifier.endpage4433en_US
dc.identifier.issn2211-3797
dc.identifier.scopus2-s2.0-85035109509
dc.identifier.startpage4427en_US
dc.identifier.urihttps://doi.org/10.1016/j.rinp.2017.11.014
dc.identifier.urihttps://hdl.handle.net/20.500.14411/2915
dc.identifier.volume7en_US
dc.identifier.wosWOS:000417531500590
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Science Bven_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectZnSen_US
dc.subjectOptical materialsen_US
dc.subjectCoatingen_US
dc.subjectDielectric propertiesen_US
dc.subjectGaSeen_US
dc.titleDesign of the ZnS/Ge/GaSe <i>pn</i> interfaces as plasmonic, photovoltaic and microwave band stop filtersen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isAuthorOfPublication.latestForDiscovery1138e68c-e06a-4ee2-a5ec-1dd89a3ecc2c
relation.isOrgUnitOfPublicationc3c9b34a-b165-4cd6-8959-dc25e91e206b
relation.isOrgUnitOfPublication.latestForDiscoveryc3c9b34a-b165-4cd6-8959-dc25e91e206b

Files

Collections